Nothing
test_that("dissect works correctly on Pima dataset", {
skip_if_not_installed("gtregression")
skip_if_not_installed("tibble")
skip_if_not_installed("purrr")
library(gtregression)
data("data_PimaIndiansDiabetes", package = "gtregression")
# categorize and transform the dataset
pima_data <- data_PimaIndiansDiabetes |>
mutate(diabetes = ifelse(diabetes == "pos", 1, 0)) |> # Convert outcome to numeric b inary
mutate(bmi = case_when(
mass < 25 ~ "Normal",
mass >= 25 & mass < 30 ~ "Overweight",
mass >= 30 ~ "Obese",
TRUE ~ NA_character_),
bmi = factor(bmi, levels = c("Normal", "Overweight", "Obese")),
age_cat = case_when(
age < 30 ~ "Young",
age >= 30 & age < 50 ~ "Middle-aged",
age >= 50 ~ "Older"),
age_cat = factor(age_cat, levels = c("Young", "Middle-aged", "Older")),
npreg_cat = ifelse(pregnant > 2, "High parity", "Low parity"),
npreg_cat = factor(npreg_cat, levels = c("Low parity", "High parity")),
glucose_cat= case_when(glucose<=140~ "Normal", glucose>140~"High"),
glucose_cat= factor(glucose_cat, levels = c("Normal", "High")),
bp_cat = case_when(
pressure < 80 ~ "Normal",
pressure >= 80 ~ "High"
),
bp_cat= factor(bp_cat, levels = c("Normal", "High")),
triceps_cat = case_when(
triceps < 23 ~ "Normal",
triceps >= 23 ~ "High"
),
triceps_cat= factor(triceps_cat, levels = c("Normal", "High")),
insulin_cat = case_when(
insulin < 30 ~ "Low",
insulin >= 30 & insulin < 150 ~ "Normal",
insulin >= 150 ~ "High"
),
insulin_cat = factor(insulin_cat, levels = c("Low", "Normal", "High"))
) |>
mutate(
dpf_cat = case_when(
pedigree <= 0.2 ~ "Low Genetic Risk",
pedigree > 0.2 & pedigree <= 0.5 ~ "Moderate Genetic Risk",
pedigree > 0.5 ~ "High Genetic Risk"
)
) |>
mutate(dpf_cat = factor(dpf_cat, levels = c("Low Genetic Risk", "Moderate Genetic Risk", "High Genetic Risk"))) |>
mutate(diabetes_cat= case_when(diabetes== 1~ "Diabetes positive", TRUE~ "Diabetes negative")) |>
mutate(diabetes_cat= factor(diabetes_cat, levels = c("Diabetes negative","Diabetes positive" )))
# Run dissect
result <- dissect(pima_data)
# Test structure
expect_s3_class(result, "tbl_df")
expect_true(all(c("Variable", "Type", "Missing (%)", "Unique", "Levels", "Compatibility") %in% names(result)))
# Check at least one of each compatibility type exists
expect_true(any(result$Compatibility == "compatible"))
expect_true(any(result$Compatibility == "maybe"))
expect_true(any(result$Compatibility == "incompatible") | TRUE) # Optional, allow none
# Check types are as expected
expect_true(all(result$Type %in% c("numeric", "factor", "character", "logical", "integer", "Date", "POSIXct")))
# Check % missing is correctly formatted
expect_true(all(grepl("^\\d+(\\.\\d)?%$", result$`Missing (%)`)))
# Snapshot for visual inspection
expect_snapshot(print(result, n = nrow(result)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.