Nothing
Code
as.data.frame(tbl_regression(parsnip::fit(parsnip::set_mode(parsnip::set_engine(
parsnip::linear_reg(), "lm"), "regression"), age ~ grade + stage, data = trial)))
Message
Extracting {parsnip} model fit with `tbl_regression(x = x$fit, ...)`
Output
**Characteristic** **Beta** **95% CI** **p-value**
1 Grade <NA> <NA> <NA>
2 I <NA> <NA> <NA>
3 II 1.6 -3.5, 6.7 0.5
4 III 2.2 -2.8, 7.3 0.4
5 T Stage <NA> <NA> <NA>
6 T1 <NA> <NA> <NA>
7 T2 1.4 -4.2, 7.0 0.6
8 T3 2.8 -3.2, 8.8 0.4
9 T4 -2.0 -7.9, 3.9 0.5
Code
as.data.frame(tbl_regression(parsnip::fit(workflows::add_formula(workflows::add_model(
workflows::workflow(), parsnip::set_engine(parsnip::logistic_reg(), "glm")),
factor(response) ~ age + stage), data = trial)))
Message
i To take full advantage of model formatting, e.g. grouping categorical variables, please add the following argument to the `workflows::add_model()` call:
* `blueprint = hardhat::default_formula_blueprint(indicators = 'none')`
Extracting {parsnip} model fit with `tbl_regression(x = x$fit, ...)`
Output
**Characteristic** **log(OR)** **95% CI** **p-value**
1 age 0.02 0.00, 0.04 0.091
2 stageT2 -0.54 -1.4, 0.31 0.2
3 stageT3 -0.06 -0.95, 0.82 0.9
4 stageT4 -0.23 -1.1, 0.64 0.6
Code
as.data.frame(tbl_regression(survival::survreg(survival::Surv(time, status) ~
age + ph.ecog, data = survival::lung)))
Condition
Warning:
The `exponentiate` argument is not supported in the `tidy()` method for `survreg` objects and will be ignored.
Output
**Characteristic** **Beta** **95% CI** **p-value**
1 age -0.01 -0.02, 0.01 0.3
2 ph.ecog -0.33 -0.49, -0.16 <0.001
Code
as.data.frame(tbl_regression(with(suppressWarnings(mice::mice(trial, m = 2)),
lm(age ~ marker + grade))))
Output
iter imp variable
1 1 age marker response
1 2 age marker response
2 1 age marker response
2 2 age marker response
3 1 age marker response
3 2 age marker response
4 1 age marker response
4 2 age marker response
5 1 age marker response
5 2 age marker response
**Characteristic** **Beta** **95% CI** **p-value**
1 Marker Level (ng/mL) 0.24 -2.2, 2.6 0.8
2 Grade <NA> <NA> <NA>
3 I <NA> <NA> <NA>
4 II 1.3 -4.5, 7.0 0.7
5 III 1.9 -3.3, 7.1 0.5
Code
as.data.frame(tbl_regression(mice::pool(with(suppressWarnings(mice::mice(trial,
m = 2)), lm(age ~ marker + grade)))))
Output
iter imp variable
1 1 age marker response
1 2 age marker response
2 1 age marker response
2 2 age marker response
3 1 age marker response
3 2 age marker response
4 1 age marker response
4 2 age marker response
5 1 age marker response
5 2 age marker response
Message
i Pass the <mice> model to `tbl_regression()` before models have been combined with `mice::pool()`.
* The default tidier, `pool_and_tidy_mice()`, will both pool and tidy the regression model.
* `mice::mice(trial, m = 2) |> with(lm(age ~ marker + grade)) |> tbl_regression()`
Output
data frame with 0 columns and 0 rows
Code
as.data.frame(tbl_regression(lme4::lmer(mpg ~ hp + (1 | cyl), mtcars)))
Output
**Characteristic** **Beta** **95% CI**
1 hp -0.03 -0.06, 0.00
Code
as.data.frame(tbl_regression(gam(mpg ~ s(hp) + factor(cyl), data = mtcars)))
Output
**Characteristic** **Beta** **95% CI** **p-value**
1 factor(cyl) <NA> <NA> <NA>
2 4 <NA> <NA> <NA>
3 6 -4.5 -8.4, -0.68 0.030
4 8 -7.8 -14, -1.4 0.026
5 s(hp) <NA> <NA> 0.093
Code
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2, 200, replace = TRUE)
cov <- matrix(runif(600), nrow = 200)
dimnames(cov)[[2]] <- c("x1", "x2", "x3")
as.data.frame(tbl_regression(crr(ftime, fstatus, cov)))
Message
For better summary support, build model with `tidycmprsk::crr()`.
Visit <https://mskcc-epi-bio.github.io/tidycmprsk/> for details.
x Unable to identify the list of variables.
This is usually due to an error calling `stats::model.frame(x)`or `stats::model.matrix(x)`.
It could be the case if that type of model does not implement these methods.
Rarely, this error may occur if the model object was created within
a functional programming framework (e.g. using `lappy()`, `purrr::map()`, etc.).
Output
**Characteristic** **log(HR)** **95% CI** **p-value**
1 x1 0.27 -0.56, 1.1 0.5
2 x2 -0.06 -0.80, 0.69 0.9
3 x3 0.28 -0.47, 1.0 0.5
Code
as.data.frame(tbl_regression(nnet::multinom(cyl ~ am, mtcars)))
Output
# weights: 9 (4 variable)
initial value 35.155593
final value 29.311125
converged
Message
i Multinomial models have a different underlying structure than the models gtsummary was designed for.
* Functions designed to work with `tbl_regression()` objects may yield unexpected results.
Output
**Outcome** **Characteristic** **log(OR)** **95% CI** **p-value**
1 6 am -1.3 -3.3, 0.73 0.2
2 8 am -2.8 -4.8, -0.77 0.007
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.