bootstrap.gevp | R Documentation |
perform a bootstrap analysis of a GEVP for a real, symmetric correlator matrix
bootstrap.gevp(cf, t0 = 1, element.order = 1:cf$nrObs, sort.type = "vectors", sort.t0 = TRUE)
cf |
correlation matrix obtained with a call to |
t0 |
initial time value of the GEVP, must be in between 0 and
|
element.order |
specifies how to fit the |
sort.type |
Sort the eigenvalues either in descending order, or by using the scalar product of the eigenvectors with the eigenvectors at t=t0+1. Possible values are "values", "vectors" and "det". The last one represents a time consuming, but in principle better version of sorting by vectors. |
sort.t0 |
for |
Say something on "det" sorting method.
Returns an object of class gevp
with member objects:
cf
:
The input data, if needed bootstrapped with
bootstrap.cf
.
res.gevp
:
The object returned from the call to gevp
.
For the format see gevp
.
gevp.tsboot
:
The bootstrap samples of the GEVP. For the format see
gevp
.
Carsten Urbach, curbach@gmx.de
Michael, Christopher and Teasdale, I., Nucl.Phys.B215 (1983)
433, DOI: 10.1016/0550-3213(83)90674-0
Blossier, B. et al., JHEP 0904
(2009) 094, DOI: 10.1088/1126-6708/2009/04/094, arXiv:0902.1265
gevp
, extract.obs
, bootstrap.cf
data(correlatormatrix) ## bootstrap the correlator matrix correlatormatrix <- bootstrap.cf(correlatormatrix, boot.R=99, boot.l=1, seed=132435) ## solve the GEVP t0 <- 4 correlatormatrix.gevp <- bootstrap.gevp(cf=correlatormatrix, t0=t0, element.order=c(1,2,3,4)) ## extract the ground state and plot pc1 <- gevp2cf(gevp=correlatormatrix.gevp, id=1) plot(pc1, log="y") ## determine the corresponding effective masses pc1.effectivemass <- bootstrap.effectivemass(cf=pc1) pc1.effectivemass <- fit.effectivemass(cf=pc1.effectivemass, t1=5, t2=20) ## summary and plot summary(pc1.effectivemass) plot(pc1.effectivemass) ## we can also use matrixfit with a special model for a principal ## correlators pc1.matrixfit <- matrixfit(pc1, t1=2, t2=24, fit.method="lm", model="pc", useCov=FALSE, parlist=array(c(1,1), dim=c(2,1)), sym.vec=c("cosh"), neg.vec=c(1)) summary(pc1.matrixfit) plot(pc1.matrixfit) ## the same can be achieved using bootstrap.nlsfit model <- function(par, x, t0, ...) { return(exp(-par[1]*(x-t0))*(par[3]+(1-par[3])*exp(-par[2]*(x-t0)))) } ii <- c(2:4, 6:25) fitres <- parametric.nlsfit(fn=model, par.guess=c(0.5, 1, .9), y=pc1$cf0[ii], dy=pc1$tsboot.se[ii], x=ii-1, boot.R=pc1$boot.R, t0=t0) summary(fitres) plot(fitres, log="y")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.