computeacf | R Documentation |
Computes the ACF and integrated autocorrelation time of a time series. It also estimates the corresponding standard errors.
computeacf(tseries, W.max, Lambda = 100)
tseries |
the time series. |
W.max |
maximal time lag to be used. |
Lambda |
cut-off needed to estimate the standard error of the ACF. |
The standard error of the ACF is computed using equation (E.11) of M. Luescher, hep-lat/0409106. The error of the integrated autocorrelation time using the Madras Sokal formula, see also hep-lat/0409106.
It returns a list of class hadronacf
with members
lags |
time lags of the integrated autocorrelation function |
Gamma |
normalised autocorrelation function |
dGamma |
error of normalised autocorrelation function |
W.max |
max time lag used for
the call of |
W |
the cut-off up to which the ACF is integrated for the integrated autocorrelation time |
tdata |
the original time series |
tau |
the estimated integrated autocorrelation time |
dtau |
the estimated error of the integrated autocorrelation time |
Carsten Urbach, curbach@gmx.de
'Monte Carlo errors with less errors', Ulli Wolff, http://arxiv.org/abs/hep-lat/0306017hep-lat/0306017
'Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD', Martin Luescher, http://arxiv.org/abs/hep-lat/0409106hep-lat/0409106
N. Madras, A. D. Sokal, J. Stat. Phys. 50 (1988) 109
uwerr
, acf
bootstrap.analysis
data(plaq.sample) myacf <- computeacf(plaq.sample, 300) plot(myacf) summary(myacf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.