Nothing
## package: haplo.stats
## test script: haplo.glm
## created: 11/23/2011
## settings
verbose=TRUE
require(haplo.stats)
Sys.setlocale("LC_COLLATE", "C")
Sys.getlocale('LC_COLLATE')
if(verbose) cat("setting up data...\n")
# prepare the hla dataset,
# runs a lot longer, and MS alleles don't all start w/ 1, 2...
label <-c("DQB","DRB","B")
data(hla.demo)
y <- hla.demo$resp
y.bin <- 1*(hla.demo$resp.cat=="low")
geno <- as.matrix(hla.demo[,c(17,18,21:24)])
geno <- setupGeno(geno, miss.val=c(0,NA))
# geno now has an attribute 'unique.alleles' which must be passed to
# haplo.glm as allele.lev=attributes(geno)$unique.alleles, see below
hla.data <- data.frame(geno=geno, age=hla.demo$age, male=hla.demo$male,
y=y, y.bin=y.bin)
seed <- c(17, 53, 1, 40, 37, 0, 62, 56, 5, 52, 12, 1)
if(verbose) cat("fit a binary trait\n")
set.seed(seed)
fit.hla.bin <- haplo.glm(y.bin ~ male + geno, family = binomial,
na.action="na.geno.keep", data=hla.data, locus.label=label,
control = haplo.glm.control(haplo.min.count=8))
y.bin <- 1*(hla.demo$resp.cat=="low")
y.bin[2] <- NA
geno.hla <- as.matrix(hla.demo[,c(17,18,21:24)])
geno.hla[2,5] <- 2
geno.hla[3,] <- rep(NA, 6)
geno.hla <- setupGeno(geno.hla, miss.val=c(0,NA))
my.hla <- data.frame(geno.hla=geno.hla, age=hla.demo$age, male=hla.demo$male,
y=y, y.bin=y.bin)
if(verbose) cat(" hla binary trait with subject that are removed\n")
set.seed(seed)
fit.hla.miss <- haplo.glm(y.bin ~ male + geno.hla, family = binomial,
na.action="na.geno.keep",
data=my.hla, locus.label=label,
control = haplo.glm.control(haplo.min.count=8))
if(verbose) cat(" gaussian with covariates, additive\n")
set.seed(seed)
fit.hla.gaus.gender <- haplo.glm(y ~ male + geno, family = gaussian,
na.action="na.geno.keep",
data=hla.data, locus.label=label,
control = haplo.glm.control(haplo.min.count=5))
if(verbose) cat("SNAP data with resp and resp with added variance\n")
snapDF <- read.table("snapData.csv",header=TRUE, sep=",", stringsAsFactors=FALSE)
geno.rec <- setupGeno(snapDF[,-c(1:9)])
snap.data <- data.frame(resp=hla.demo$resp, respvar=hla.demo$resp*100, geno=geno.rec)
set.seed(seed)
fit.resp.hla <- haplo.glm(resp~geno, trait.type="gaussian",data=snap.data)
set.seed(seed)
fit.respvar.hla <- haplo.glm(respvar~geno, trait.type="gaussian",data=snap.data)
cat("summary function\n")
print(summary(fit.hla.bin),digits=3)
cat("fitted values for hlabin, hla-gaussian, hla-gaussian-hi-variance\n")
print(fitted(fit.hla.bin)[1:20],digits=3)
print(fitted(fit.resp.hla)[1:20],digits=3)
print(fitted(fit.respvar.hla)[1:20],digits=3)
cat("vcov for hlabin, hla-gaussian, hla-gaussian-hi-variance\n")
print(vcov(fit.hla.bin)[1:20,1:20],digits=3)
print(vcov(fit.resp.hla),digits=3)
print(vcov(fit.respvar.hla),digits=3)
cat("residuals for hlabin, hla-gaussian, hla-gaussian-hi-variance\n")
print(residuals(fit.hla.bin, type="deviance")[1:20],digits=3)
print(residuals(fit.hla.bin, type="pearson")[1:20],digits=3)
print(residuals(fit.hla.bin, type="response")[1:20],digits=3)
print(residuals(fit.resp.hla)[1:20],digits=3)
print(residuals(fit.respvar.hla)[1:20],digits=3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.