| hanr_garch | R Documentation |
Fits a GARCH model to capture conditional heteroskedasticity and flags
observations with large standardized residuals as anomalies. Wraps rugarch.
hanr_garch()
A sGARCH(1,1) with ARMA(1,1) mean is estimated. Standardized residuals are
summarized and thresholded via harutils().
hanr_garch object.
Engle RF (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4):987–1007.
Bollerslev T (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3):307–327.
library(daltoolbox)
# Load anomaly example data
data(examples_anomalies)
# Use a simple example
dataset <- examples_anomalies$simple
head(dataset)
# Configure GARCH anomaly detector
model <- hanr_garch()
# Fit the model
model <- fit(model, dataset$serie)
# Run detection
detection <- detect(model, dataset$serie)
# Show detected anomalies
print(detection[(detection$event),])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.