hanr_ml | R Documentation |
Anomaly detection using daltoolbox regression The regression model adjusts to the time series. Observations distant from the model are labeled as anomalies. A set of preconfigured regression methods are described in https://cefet-rj-dal.github.io/daltoolbox/. They include: ts_elm, ts_conv1d, ts_lstm, ts_mlp, ts_rf, ts_svm
hanr_ml(model, sw_size = 15)
model |
DALToolbox regression model |
sw_size |
sliding window size |
hanr_ml
object
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using simple example
dataset <- examples_anomalies$simple
head(dataset)
# setting up time series regression model
model <- hanr_ml(ts_elm(ts_norm_gminmax(), input_size=4, nhid=3, actfun="purelin"))
# fitting the model
model <- fit(model, dataset$serie)
detection <- detect(model, dataset$serie)
# filtering detected events
print(detection[(detection$event),])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.