hanr_wavelet | R Documentation |
Anomaly detection using Wavelet The Wavelet model adjusts to the time series. Observations distant from the model are labeled as anomalies. It wraps the Wavelet model presented in the stats library.
hanr_wavelet(filter = "haar")
filter |
Availables wavelet filters: haar, d4, la8, bl14, c6 |
hanr_wavelet
object
library(daltoolbox)
#loading the example database
data(examples_anomalies)
#Using simple example
dataset <- examples_anomalies$simple
head(dataset)
# setting up time series fft detector
model <- hanr_wavelet()
# fitting the model
model <- fit(model, dataset$serie)
detection <- detect(model, dataset$serie)
# filtering detected events
print(detection[(detection$event),])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.