Nothing
#' Log marginal likelihood of a GLM under commensurate prior (CP)
#'
#' @description Uses Markov chain Monte Carlo (MCMC) and bridge sampling to estimate the logarithm of the marginal
#' likelihood of a GLM under the commensurate prior (CP).
#'
#' @description The arguments related to MCMC sampling are utilized to draw samples from the commensurate prior.
#' These samples are then used to compute the logarithm of the normalizing constant of the commensurate prior using
#' historical data sets.
#'
#' @include expfam_loglik.R
#' @include mixture_loglik.R
#' @include glm_commensurate_lognc.R
#'
#' @export
#'
#' @param post.samples output from [glm.commensurate()] giving posterior samples of a GLM under the commensurate
#' prior (CP), with an attribute called 'data' which includes the list of variables specified
#' in the data block of the Stan program.
#' @param bridge.args a `list` giving arguments (other than `samples`, `log_posterior`, `data`, `lb`, and `ub`) to
#' pass onto [bridgesampling::bridge_sampler()].
#' @param iter_warmup number of warmup iterations to run per chain. Defaults to 1000. See the argument `iter_warmup`
#' in `sample()` method in cmdstanr package.
#' @param iter_sampling number of post-warmup iterations to run per chain. Defaults to 1000. See the argument `iter_sampling`
#' in `sample()` method in cmdstanr package.
#' @param chains number of Markov chains to run. Defaults to 4. See the argument `chains` in `sample()` method
#' in cmdstanr package.
#' @param ... arguments passed to `sample()` method in cmdstanr package (e.g., `seed`, `refresh`, `init`).
#'
#' @return
#' The function returns a `list` with the following objects
#'
#' \describe{
#' \item{model}{"Commensurate"}
#'
#' \item{logml}{the estimated logarithm of the marginal likelihood}
#'
#' \item{bs}{an object of class `bridge` or `bridge_list` containing the output from using [bridgesampling::bridge_sampler()]
#' to compute the logarithm of the normalizing constant of the commensurate prior (CP) using all data sets}
#'
#' \item{bs.hist}{an object of class `bridge` or `bridge_list` containing the output from using
#' [bridgesampling::bridge_sampler()] to compute the logarithm of the normalizing constant of the CP using historical
#' data sets}
#'
#' \item{min_ess_bulk}{the minimum estimated bulk effective sample size of the MCMC sampling}
#'
#' \item{max_Rhat}{the maximum Rhat}
#' }
#'
#' @references
#' Hobbs, B. P., Carlin, B. P., Mandrekar, S. J., and Sargent, D. J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics, 67(3), 1047–1056.
#'
#' Gronau, Q. F., Singmann, H., and Wagenmakers, E.-J. (2020). bridgesampling: An r package for estimating normalizing constants. Journal of Statistical Software, 92(10).
#'
#' @examples
#' if (instantiate::stan_cmdstan_exists()) {
#' data(actg019)
#' data(actg036)
#' ## take subset for speed purposes
#' actg019 = actg019[1:100, ]
#' actg036 = actg036[1:50, ]
#' formula = cd4 ~ treatment + age + race
#' family = poisson()
#' data_list = list(currdata = actg019, histdata = actg036)
#' d.cp = glm.commensurate(
#' formula = formula,
#' family = family,
#' data.list = data_list,
#' p.spike = 0.1,
#' chains = 1, iter_warmup = 500, iter_sampling = 1000
#' )
#' glm.logml.commensurate(
#' post.samples = d.cp,
#' bridge.args = list(silent = TRUE),
#' chains = 1, iter_warmup = 500, iter_sampling = 1000
#' )
#' }
glm.logml.commensurate = function(
post.samples,
bridge.args = NULL,
iter_warmup = 1000,
iter_sampling = 1000,
chains = 4,
...
) {
stan.data = attr(post.samples, 'data')
K = stan.data$K
if ( K == 1 ){
stop("data.list should include at least one historical data set")
}
d = as.matrix(post.samples)
## rename parameters
p = stan.data$p
X = stan.data$X
oldnames = c(paste0("beta[", 1:p, "]"), paste0("beta0[", 1:p, "]"))
newnames = c(colnames(X), paste0( colnames(X), '_hist') )
colnames(d)[colnames(d) %in% newnames] = oldnames
if ( stan.data$dist > 2 ) {
oldnames = c(oldnames, 'dispersion', paste0( 'dispersion', '_hist_', 1:(K-1) ))
}
oldnames = c(oldnames, paste0("comm_prec[", 1:p,"]"))
d = d[, oldnames, drop=F]
## compute log normalizing constants for half-normal priors
stan.data$lognc_spike = pnorm(0, mean = stan.data$mu_spike, sd = stan.data$sigma_spike, lower.tail = F, log.p = T)
stan.data$lognc_slab = pnorm(0, mean = stan.data$mu_slab, sd = stan.data$sigma_slab, lower.tail = F, log.p = T)
stan.data$lognc_disp = sum( pnorm(0, mean = stan.data$disp_mean, sd = stan.data$disp_sd, lower.tail = F, log.p = T) )
## log of the unnormalized posterior density function
log_density = function(pars, data){
p = data$p
K = data$K
N = data$N
beta = pars[paste0("beta[", 1:p,"]")]
beta0 = pars[paste0("beta0[", 1:p,"]")]
comm_prec = pars[paste0("comm_prec[", 1:p,"]")]
comm_sd = 1/sqrt(comm_prec)
## prior on beta0 and beta
prior_lp = sum( dnorm(beta0, mean = data$beta0_mean, sd = data$beta0_sd, log = T) ) +
sum( dnorm(beta, mean = beta0, sd = comm_sd, log = T) )
## spike and slab prior on commensurability
prior_lp = prior_lp + sum( sapply(1:p, function(i){
p_spike = data$p_spike
spike_lp = dnorm(comm_prec[i], mean = data$mu_spike, sd = data$sigma_spike, log = T) - data$lognc_spike
slab_lp = dnorm(comm_prec[i], mean = data$mu_slab, sd = data$sigma_slab, log = T) - data$lognc_slab
log_sum_exp( c( log(p_spike) + spike_lp, log(1 - p_spike) + slab_lp ) )
}) )
dist = data$dist
link = data$link
start.idx = data$start_idx
end.idx = data$end_idx
dispersion = rep(1.0, K)
if ( dist > 2 ){
## prior on dispersion
dispersion = pars[c("dispersion", paste0( "dispersion", "_hist_", 1:(K-1) ))]
prior_lp = prior_lp +
sum( dnorm(dispersion, mean = data$disp_mean, sd = data$disp_sd, log = T) ) - data$lognc_disp
## historical data likelihood
prior_lp = prior_lp + sum( sapply(2:K, function(k){
y = data$y[ start.idx[k]:end.idx[k] ]
X = data$X[ start.idx[k]:end.idx[k], ]
offs = data$offs[ start.idx[k]:end.idx[k] ]
glm_lp(y, beta0, X, dist, link, offs, dispersion[k])
}) )
}else {
## historical data likelihood
prior_lp = prior_lp +
glm_lp(data$y[ start.idx[2]:N ], beta0,
data$X[ start.idx[2]:N, ], dist, link,
data$offs[ start.idx[2]:N ], 1.0)
}
## current data likelihood
y = data$y[ start.idx[1]:end.idx[1] ]
X = data$X[ start.idx[1]:end.idx[1], ]
offs = data$offs[ start.idx[1]:end.idx[1] ]
data_lp = glm_lp(y, beta, X, dist, link, offs, dispersion[1])
return(data_lp + prior_lp)
}
lb = rep(-Inf, p*2)
ub = rep(Inf, p*2)
if( stan.data$dist > 2 ) {
lb = c(lb, rep(0, K))
ub = c(ub, rep(Inf, K))
}
lb = c(lb, rep(0, p))
ub = c(ub, rep(Inf, p))
names(ub) = colnames(d)
names(lb) = names(ub)
bs = do.call(
what = bridgesampling::bridge_sampler,
args = append(
list(
"samples" = d,
'log_posterior' = log_density,
'data' = stan.data,
'lb' = lb,
'ub' = ub),
bridge.args
)
)
## get Stan data for CP using historical data sets
hist.stan.data = stan.data
hist.stan.data$K = K - 1
n = stan.data$end_idx[1] ## current data sample size
hist.stan.data$N = stan.data$N - n
hist.stan.data$start_idx = stan.data$start_idx[-1] - n
hist.stan.data$end_idx = stan.data$end_idx[-1] - n
hist.stan.data$y = stan.data$y[-(1:n)]
hist.stan.data$X = stan.data$X[-(1:n), ]
hist.stan.data$disp_mean = stan.data$disp_mean[-1]
hist.stan.data$disp_sd = stan.data$disp_sd[-1]
hist.stan.data$offs = stan.data$offs[-(1:n)]
## sample from CP using historical data sets
glm_commensurate_prior = instantiate::stan_package_model(
name = "glm_commensurate_prior",
package = "hdbayes"
)
fit = glm_commensurate_prior$sample(data = hist.stan.data,
iter_warmup = iter_warmup, iter_sampling = iter_sampling, chains = chains,
...)
summ = posterior::summarise_draws(fit)
hist.post.samples = fit$draws(format = 'draws_df')
attr(x = hist.post.samples, which = 'data') = hist.stan.data
## compute log normalizing constant for CP using historical data sets
res.hist = glm.commensurate.lognc(
post.samples = hist.post.samples,
bridge.args = bridge.args
)
## Return a list of model name, estimated log marginal likelihood, outputs from bridgesampling::bridge_sampler,
## the minimum estimated bulk effective sample size of the MCMC sampling, and the maximum Rhat
res = list(
'model' = "Commensurate",
'logml' = bs$logml - res.hist$lognc,
'bs' = bs,
'bs.hist' = res.hist$bs,
'min_ess_bulk' = min(summ[, 'ess_bulk']),
'max_Rhat' = max(summ[, 'rhat'])
)
if ( res[['min_ess_bulk']] < 1000 )
warning(
paste0(
'The minimum bulk effective sample size of the MCMC sampling is ',
round(res[['min_ess_bulk']], 4),
'. It is recommended to have at least 1000. Try increasing the number of iterations.'
)
)
if ( res[['max_Rhat']] > 1.10 )
warning(
paste0(
'The maximum Rhat of the MCMC sampling is ',
round(res[['max_Rhat']], 4),
'. It is recommended to have a maximum Rhat of no more than 1.1. Try increasing the number of iterations.'
)
)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.