Nothing
#' Log marginal likelihood of a GLM under a normal/half-normal prior
#'
#' Uses bridge sampling to estimate the logarithm of the marginal likelihood of a GLM under the normal/half-normal prior.
#'
#' @include expfam_loglik.R
#'
#' @export
#'
#' @param post.samples output from [glm.post()] giving posterior samples of a GLM under the normal/half-normal
#' prior, with an attribute called 'data' which includes the list of variables specified
#' in the data block of the Stan program.
#' @param bridge.args a `list` giving arguments (other than `samples`, `log_posterior`, `data`, `lb`, and `ub`) to
#' pass onto [bridgesampling::bridge_sampler()].
#'
#' @return
#' The function returns a `list` with the following objects
#'
#' \describe{
#' \item{model}{"Normal/Half-Normal"}
#'
#' \item{logml}{the estimated logarithm of the marginal likelihood}
#'
#' \item{bs}{an object of class `bridge` or `bridge_list` containing the output from using [bridgesampling::bridge_sampler()]
#' to compute the logarithm of the marginal likelihood of the normal/half-normal prior}
#' }
#'
#' @references
#' Gronau, Q. F., Singmann, H., and Wagenmakers, E.-J. (2020). bridgesampling: An r package for estimating normalizing constants. Journal of Statistical Software, 92(10).
#'
#' @examples
#' if (instantiate::stan_cmdstan_exists()) {
#' data(actg019)
#' actg019 = actg019[1:100, ]
#' data.list = list(currdata = actg019)
#' formula = cd4 ~ treatment + age + race
#' family = poisson('log')
#' d.post = glm.post(
#' formula = formula, family = family,
#' data.list = data.list,
#' chains = 1, iter_warmup = 500, iter_sampling = 1000
#' )
#' glm.logml.post(
#' post.samples = d.post,
#' bridge.args = list(silent = TRUE)
#' )
#' }
glm.logml.post = function(
post.samples,
bridge.args = NULL
) {
stan.data = attr(post.samples, 'data')
d = as.matrix(post.samples)
## rename parameters
p = stan.data$p
X = stan.data$X
oldnames = paste0("beta[", 1:p, "]")
newnames = colnames(X)
colnames(d)[colnames(d) %in% newnames] = oldnames
if ( stan.data$dist > 2 ) {
oldnames = c(oldnames, 'dispersion')
}
d = d[, oldnames, drop=F]
## compute log normalizing constants (lognc) for half-normal prior on dispersion
stan.data$lognc_disp = pnorm(0, mean = stan.data$disp_mean, sd = stan.data$disp_sd, lower.tail = F, log.p = T)
## log of the unnormalized posterior density function
log_density = function(pars, data){
beta = pars[paste0("beta[", 1:data$p,"]")]
prior_lp = sum( dnorm(beta, mean = data$mean_beta, sd = data$sd_beta, log = T) )
dist = data$dist
link = data$link
dispersion = 1.0
if ( dist > 2 ){
dispersion = pars[["dispersion"]]
prior_lp = prior_lp +
dnorm(dispersion, mean = data$disp_mean, sd = data$disp_sd, log = T) - data$lognc_disp
}
data_lp = glm_lp(data$y, beta, data$X, dist, link, data$offs, dispersion)
return(data_lp + prior_lp)
}
lb = rep(-Inf, p)
ub = rep(Inf, p)
if( stan.data$dist > 2 ) {
lb = c(lb, 0)
ub = c(ub, Inf)
}
names(ub) = colnames(d)
names(lb) = names(ub)
bs = do.call(
what = bridgesampling::bridge_sampler,
args = append(
list(
"samples" = d,
'log_posterior' = log_density,
'data' = stan.data,
'lb' = lb,
'ub' = ub),
bridge.args
)
)
## Return a list of model name, estimated log marginal likelihood, and output from bridgesampling::bridge_sampler
res = list(
'model' = "Normal/Half-Normal",
'logml' = bs$logml,
'bs' = bs
)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.