Nothing
#' meatCL.heckmanGE
#' Compute the Meat Matrix for a Heckman-Ge Model with Clustering
#'
#' This function calculates the meat matrix for a Heckman-Ge model, which is used in the context of clustered standard errors. The meat matrix represents the variability of the estimated parameters and is a crucial component for robust inference.
#'
#' @param x An object of class `heckmanGE` containing the results from a Heckman-Ge model fit.
#' @param cluster A vector or a data frame specifying the cluster variable(s). If `NULL`, the default clustering variable is used.
#' @param type The type of heteroscedasticity-consistent (HC) estimator to use. Options are "HC0", "HC1", "HC2", or "HC3". Defaults to "HC0".
#' @param cadjust A logical value indicating whether to adjust for the number of clusters. Defaults to `TRUE`.
#' @param multi0 A logical value indicating whether to include a column of ones in the cluster variable matrix. Defaults to `FALSE`.
#' @param ... Additional arguments passed to other methods.
#'
#' @return A matrix representing the meat component of the robust covariance matrix estimator for the Heckman-Ge model.
#'
#' @importFrom stats expand.model.frame model.matrix model.response model.weights na.pass hatvalues weights coef binomial pnorm dnorm glm.fit
#' @importFrom utils tail combn
#' @export
meatCL.heckmanGE = function(x, cluster = NULL, type = NULL, cadjust = TRUE, multi0 = FALSE, ...) {
if (is.list(x) && !is.null(x$na.action))
class(x$na.action) <- "omit"
ef <- estfun.heckmanGE(x, ...)
k <- NCOL(ef)
n <- NROW(ef)
rval <- matrix(0, nrow = k, ncol = k, dimnames = list(colnames(ef),
colnames(ef)))
if (is.null(cluster))
cluster <- attr(x, "cluster")
if (is.null(cluster))
cluster <- 1L:n
if (inherits(cluster, "formula")) {
cluster_tmp <- if ("Formula" %in% loadedNamespaces()) {
suppressWarnings(expand.model.frame(x, cluster,
na.expand = FALSE))
}
else {
expand.model.frame(x, cluster, na.expand = FALSE)
}
cluster <- model.frame(cluster, cluster_tmp, na.action = na.pass)
}
else {
cluster <- as.data.frame(cluster)
}
if ((n != NROW(cluster)) && !is.null(x$na.action) && (class(x$na.action) %in%
c("exclude", "omit"))) {
cluster <- cluster[-x$na.action, , drop = FALSE]
}
if (NROW(cluster) != n)
stop("number of observations in 'cluster' and 'estfun()' do not match")
if (anyNA(cluster))
stop("cannot handle NAs in 'cluster': either refit the model without the NA observations in 'cluster' or impute the NAs")
p <- NCOL(cluster)
if (p > 1L) {
cl <- lapply(1L:p, function(i) combn(1L:p, i, simplify = FALSE))
cl <- unlist(cl, recursive = FALSE)
sign <- sapply(cl, function(i) (-1L)^(length(i) + 1L))
paste_ <- function(...) paste(..., sep = "_")
for (i in (p + 1L):length(cl)) {
cluster <- cbind(cluster, Reduce(paste_, unclass(cluster[, cl[[i]]])))
}
if (multi0)
cluster[[length(cl)]] <- 1L:n
}
else {
cl <- list(1)
sign <- 1
}
g <- sapply(1L:length(cl), function(i) {
if (is.factor(cluster[[i]])) {
length(levels(cluster[[i]]))
}
else {
length(unique(cluster[[i]]))
}
})
if (is.null(type)) {
type <- if (class(x)[1L] == "lm")
"HC1"
else "HC0"
}
type <- match.arg(type, c("HC", "HC0", "HC1", "HC2", "HC3"))
if (type == "HC")
type <- "HC0"
if (type %in% c("HC2", "HC3")) {
if (any(g == n))
h <- hatvalues(x)
if (!all(g == n)) {
if (!(class(x)[1L] %in% c("lm", "glm")))
warning("clustered HC2/HC3 are only applicable to (generalized) linear regression models")
X <- model.matrix(x)
if (any(alias <- is.na(coef(x))))
X <- X[, !alias, drop = FALSE]
attr(X, "assign") <- NULL
w <- weights(x, "working")
XX1 <- if (is.null(w))
chol2inv(qr.R(qr(X)))
else chol2inv(qr.R(qr(X * sqrt(w))))
res <- rowMeans(ef/X, na.rm = TRUE)
res[apply(abs(ef) < .Machine$double.eps, 1L, all)] <- 0
}
}
for (i in 1L:length(cl)) {
efi <- ef
adj <- if (multi0 & (i == length(cl))) {
if (type == "HC1")
(n - k)/(n - 1L)
else 1
}
else {
if (cadjust)
g[i]/(g[i] - 1L)
else 1
}
if (type %in% c("HC2", "HC3")) {
if (g[i] == n) {
efi <- if (type == "HC2") {
efi/sqrt(1 - h)
}
else {
efi/(1 - hatvalues(x))
}
}
else {
for (j in unique(cluster[[i]])) {
ij <- which(cluster[[i]] == j)
Hij <- if (is.null(w)) {
X[ij, , drop = FALSE] %*% XX1 %*% t(X[ij,
, drop = FALSE])
}
else {
X[ij, , drop = FALSE] %*% XX1 %*% t(X[ij,
, drop = FALSE]) %*% diag(w[ij], nrow = length(ij),
ncol = length(ij))
}
Hij <- if (type == "HC2") {
matrixpower(diag(length(ij)) - Hij, -0.5)
}
else {
solve(diag(length(ij)) - Hij)
}
efi[ij, ] <- drop(Hij %*% res[ij]) * X[ij,
, drop = FALSE]
}
}
efi <- sqrt((g[i] - 1L)/g[i]) * efi
}
efi <- if (g[i] < n)
apply(efi, 2L, rowsum, cluster[[i]])
else efi
rval <- rval + sign[i] * adj * crossprod(efi)/n
}
if (type == "HC1")
rval <- (n - 1L)/(n - k) * rval
return(rval)
}
## matrix power (for square root and inverse square root)
matrixpower <- function(X, p, symmetric = NULL, tol = .Machine$double.eps^(1/1.3)) {
if((ncol(X) == 1L) && (nrow(X) == 1L)) return(X^p)
if(is.null(symmetric)) symmetric <- isSymmetric(X)
Xeig <- eigen(X, symmetric = symmetric)
if(is.complex(Xeig$values)) {
if(any(abs(Im(Xeig$values)) > tol)) warning("complex eigen values of X")
Xeig$values <- Re(Xeig$values)
Xeig$vectors <- Re(Xeig$vectors)
}
Xeig$values[Xeig$values < tol] <- 0
# if(any(Xeig$values < 0)) stop("matrix is not positive semidefinite")
if(symmetric) {
Xeig$vectors %*% ((Xeig$values^p) * t(Xeig$vectors))
} else {
Xeig$vectors %*% ((Xeig$values^p) * matrixinverse(Xeig$vectors))
}
}
matrixinverse <- function(X, tol = .Machine$double.eps^(1/1.3)) {
if((ncol(X) == 1L) && (nrow(X) == 1L)) return(1/X)
inv <- try(solve(X), silent = TRUE)
if(!inherits(inv, "try-error")) return(inv)
Xsvd <- svd(X)
ok <- Xsvd$d > max(tol * Xsvd$d[1L], 0)
inv <- Xsvd$v[, ok, drop = FALSE] %*% ((1/Xsvd$d[ok]) * t(Xsvd$u[, ok, drop = FALSE]))
return(inv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.