R/simulate-hhsmm.R

Defines functions simulate.hhsmmspec

Documented in simulate.hhsmmspec

#' Simulation of data from hhsmm model 
#'
#' Simulates a data set of class \code{"hhsmmdata"} using a \code{\link{hhsmmspec}} model
#'
#' @author Morteza Amini, \email{morteza.amini@@ut.ac.ir}, Afarin Bayat, \email{aftbayat@@gmail.com}
#'
#' @param object a \code{\link{hhsmmspec}} model 
#' @param nsim a vector of sequence lengths (might be of length 1)
#' @param seed a random seed to be set
#' @param remission a random emission generation function (default = \code{\link{rmixmvnorm}})
#' @param ... additional parameters of the \code{remission} function
#' @param emission.control a list of additional control parameters including the 
#' following items:
#' \itemize{
#' \item \code{autoregress} logical. if TRUE the auto-regressive data generation will be considered with 
#' \code{rmixar} function
#' \item \code{lags} a positive integer which is the number of lags to be considered for the 
#' auto-regressive sequence
#' \item \code{start} a list containing the items \code{mean} which is the mean vector 
#' and \code{cov} which is the covarince matrix for starting value of the auto-regressive 
#' sequence (if \code{autoregress == TRUE}). 
#' If \code{start} is not specified the zero mean vector and the identity matrix 
#' will be considered as \code{mean} and \code{cov}, respectively.
#' }
#'
#' @return a list of class \code{"hsmm.data"} containing the following items:
#' \itemize{
#' \item \code{s} the vector of states
#' \item \code{x} observation matrix
#' \item\code{N} vector of sequence lengths
#' }
#'
#' @examples
#' J <- 3
#' initial <- c(1, 0, 0)
#' semi <- c(FALSE, TRUE, FALSE)
#' P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J, 
#' byrow = TRUE)
#' par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)),
#' sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)),
#' mix.p = list(c(0.3, 0.7),c(0.2, 0.3, 0.5), c(0.5, 0.5)))
#' sojourn <- list(shape = c(0, 3, 0), scale = c(0, 8, 0), type = "gamma")
#' model <- hhsmmspec(init = initial, transition = P, parms.emis = par,
#' dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi)
#' train <- simulate(model, nsim = c(8, 5, 5, 10), seed = 1234, 
#' remission = rmixmvnorm)
#'
#' @importFrom stats simulate
#'
#' @export
#'
simulate.hhsmmspec <- function(object, nsim, seed = NULL, 
	remission = rmixmvnorm, ..., emission.control = 
	list(autoregress = FALSE, lags = 1, start = 
	list(mean = NULL, cov = NULL)))
{
	defaultec <- list(autoregress = FALSE, lags = 1, start = list(mean = NULL, cov = NULL))
	emission.control <- modifyList(defaultec, emission.control)
	if (emission.control$autoregress) {
		remission = rmixar
		if (is.null(emission.control$start$mean)) 
			emission.control$start$mean = rep(0, 
				length(object$parms.emission$intercept[[1]][[1]]))
		if (is.null(emission.control$start$cov)) 
			emission.control$start$cov = 
				diag(length(object$parms.emission$intercept[[1]][[1]]))
	}
	right.truncate = left.truncate = 0
	if (!is.null(seed)) set.seed(seed)
	if (is.null(remission) & is.null(object$remission)) stop("remission not specified")
	if (!is.null(remission)) object$remission = remission
	for (j in 1:object$J) if (object$semi[j] & object$transition[j,j] != 0) stop('Semi-markov states must have diagonal zero transition elements')
	if(length( nsim) == 1) M <-  nsim else M <- max( nsim)
	s0 <- .simulate_markov(object$init, object$transition,  nsim)
	if (!all(!object$semi)) {
		if (object$sojourn$type == "poisson") {
      		rsojourn <- function(ii) { 
				if(object$semi[ii]) .rpois.hhsmm(1, object$sojourn$lambda[ii], object$sojourn$shift[ii])
				else { 
					if (object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			}
    		}else if (object$sojourn$type == "gamma") {
    			rsojourn <- function(ii) { 
				if (object$semi[ii])  trunc(rgamma(1, shape = object$sojourn$shape[ii], scale = object$sojourn$scale[ii])) + 1
				else { 
					if (object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			} 
   		} else if (object$sojourn$type == "lnorm") {
    			rsojourn <- function(ii) {
				if (object$semi[ii])  trunc(rlnorm(1, object$sojourn$meanlog[ii], object$sojourn$sdlog[ii]))+1
				else { 
					if (object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			}
		} else if (object$sojourn$type == "logarithmic") {
      		rsojourn <- function(ii){
				if (object$semi[ii]) .rlog(1, object$sojourn$shape[ii])
				else { 
					if(object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			}        
		} else if (object$sojourn$type == "nbinom") {
      		rsojourn <- function(ii) {
				if (object$semi[ii]) .rnbinom.hhsmm(1, object$sojourn$shape[ii])
				else { 
					if (object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			}   
    		} else if (object$sojourn$type == "nonparametric") {
    			rsojourn <- function(ii) {
				if (object$semi[ii]) sample(1:nrow(object$sojourn$d), 1, prob = object$sojourn$d[,ii])
				else { 
					if (object$transition[ii,ii] < 1) rgeom(1, 1 - object$transition[ii,ii])
					else 1
				}
			} 
    		} else stop("Unknown sojourn distribution")
		u = sapply(s0, rsojourn)
    		s1 = rep(s0, u)[(left.truncate + 1):(sum(u) - right.truncate)]
	} else {
		s1 = s0
		u = rep(1, sum(nsim))
	}
	if (emission.control$autoregress) {
		x = rmvnorm(emission.control$lags, emission.control$start$mean, emission.control$start$cov)
		for(i in 1:length(s1)){
			x = rbind(x, remission(s1[i], object, x[(nrow(x) - emission.control$lags + 1):nrow(x), ]))		
		}
		x = as.matrix(x[-(1:emission.control$lags), ])
	} else {
    		x = as.matrix(sapply(s1, function(i) remission(i, object, ...)))
	}
	if (length(nsim) > 1) {
  		N =  nsim
  		tmp = cumsum(c(1, N))
  		for(i in 1:(length(tmp) - 1)) N[i] = sum(u[tmp[i]:(tmp[i + 1] - 1)])
  		if(NCOL(x) > 1) ret = list(s = s1, x = t(x), N = N)
  		else ret = list(s = s1, x = x, N = N)
	} else {
		if(NCOL(x) > 1) ret = list(s = s1, x = t(x), N = NCOL(x))
    		else ret = list(s = s1, x = x, N = NROW(x))
	}
    	class(ret) <- "hhsmmdata"
    	ret
}

Try the hhsmm package in your browser

Any scripts or data that you put into this service are public.

hhsmm documentation built on May 29, 2024, 6:08 a.m.