Nothing
#' Estimate Heterogeneous Treatment Effect via Causal Tree
#'
#' Estimate heterogeneous treatment effect via causal tree. In each leaf,
#' the treatment effect is the difference of mean outcome in treatment
#' group and control group.
#'
#' @param outcomevariable a character representing the column name
#' of the outcome variable.
#' @param treatment_indicator a character representing the column
#' name of the treatment indicator.
#' @param ps_indicator a character representing the column name of
#' the propensity score.
#' @param covariates a vector of column names of all
#' covariates (linear terms andpropensity score).
#' @param data a data frame containing the variables in the model.
#' @param minsize the minimum number of observations in each leaf.
#' The default is set as 20.
#' @param crossvalidation number of cross validations. The default
#' is set as 20.
#' @param drawplot a logical value indicating whether to plot the
#' model as part of the output. The default is set as TRUE.
#' @param negative a logical value indicating whether we expect the
#' treatment effect to be negative. The default is set as FALSE.
#' @param varlabel a named vector containing variable labels.
#' @param maintitle a character string indicating the main title displayed
#' when plotting the tree and results. The default is set as
#' "Heterogeneous Treatment Effect Estimation".
#' @param legend.x,legend.y x and y coordinate to position the legend.
#' The default is set as (0.08, 0.25).
#' @param check if TRUE, generates 100 trees and outputs most common
#' tree structures and their frequency
#' @param ... further arguments passed to or from other methods.
#' @returns predicted treatment effect and the associated tree
#' @examples
#' library(rpart)
#' library(htetree)
#' hte_causalTree(outcomevariable="outcome",
#' data=data.frame("confounder"=c(0, 1, 1, 0, 1, 1),
#' "treatment"=c(0,0,0,1,1,1),
#' "prop_score"=c(0.4, 0.4, 0.5, 0.6, 0.6, 0.7),
#' "outcome"=c(1, 2, 2, 1, 4, 4)),
#' treatment_indicator = "treatment",
#' ps_indicator = "prop_score",
#' covariates = "confounder")
# Function 1: Ordinary causal tree --------------------------------------------------------------
# Ordinary causal tree: the estimated (conditional) average treatment
# effect is the difference between streatment and
# control group, e.g., mean(Y_treat)-mean(Y_control)|X
hte_causalTree <- function(outcomevariable,
# the name of outcome variabls we are interested in
minsize=20,
# minimum number of treated observations,
# control observations in a leaf
crossvalidation = 20,
# number of cross-validations to do
data,
# can be changed, and the defaul one defined here
# is edurose_mediation_20181126, the education dataset we are
# working on
treatment_indicator, # treatment variable
ps_indicator, # propensity scores
covariates,
negative = FALSE,
# can be changed, specify the expected direction
# of the treatment effects
drawplot = TRUE,
# export the graph of tree structure if true
# no_indicater="",
varlabel=NULL,
maintitle="Heterogeneous Treatment Effect Estimation",
legend.x = 0.08,
legend.y = 0.25,
check = FALSE,
...){
# if("rpart" %in% rownames(installed.packages()) == FALSE) {install.packages("data.tree")}
# library("rpart")
requireNamespace("rpart")
# delete all missing values which is required in causal tree model
# and use it as the train set in machine learning model
# remotes::install_github("susanathey/causalTree",build = FALSE)
trainset <- data[!is.na(data[,outcomevariable]),]
# set up the formula used for constructing causal tree
# export the formula for causal tree model: Y~X
formula <- as.formula(paste(outcomevariable," ~ ",
paste(covariates,collapse = '+'), collapse= "+"))
requireNamespace("rpart")
# check=TRUE
# implement the check
if(check==TRUE){
check_tree <- replicate(100,
{if(nchar(ps_indicator)>0){
# contruct tree
tree <- causalTree(formula,
# specify the model, outcome variable ~ covariates
data = trainset, # specify the dataset to be used
treatment = trainset[,treatment_indicator],
# specify the treatment variable, must be 0/1 indicator
split.Rule = "CT",
# specify split rule; for causal tree, use "CT"
# NOTE: there are four different splitting rules,
# they are different in the cross-validation criteria used
# to determine the tree structure
# 1 - TOT
# 2 - CT
# 3 - fit
# 4 - tstats
# 5 - totD
# 6 - ctD
# 7 - fitD
# 8 - tstatsD
cv.option = "CT", # specifify cross validation method
# and there are four different methods -- tot, ct, fit, tstats
# for causal tree, use "CT"
split.Honest = T, cv.Honest = T, split.Bucket = F,
xval = crossvalidation,
# number of cross-validations to do and the default number is 20
cp = 0,
propensity = trainset[,ps_indicator],
# specify the propensity score; if is not specified, it will use sum(treatment) / nobs as the propensity score
minsize = minsize # minimum number of treated observations, control observations in a leaf
# the default minimum size is 20, according to Jennie and Yu Xie's paper (Estimating Heterogeneous Treatment Effects with Observational Data, 2012)
)}else{
tree <- causalTree(formula,
data = trainset,
treatment = trainset[,treatment_indicator],
split.Rule = "CT",
cv.option = "CT",
split.Honest = T, cv.Honest = F, split.Bucket = F,
xval = crossvalidation,
cp = 0,
minsize = minsize
)
}
# prune this tree model to avoid the overfitting issues
# get the complexity parameter (cp) to be trimmed--the least important splits
opcp <- tree$cptable[,1][which.min(tree$cptable[,4])]
# recursively snipping off the least important tree based on the complexity parameter (cp)
opfit <- rpart::prune(tree, opcp)
# paste(opfit$frame$var,collapse=" ")
prty <- partykit::as.party(opfit)
opfit_tree <- data.tree::as.Node(prty)
# i <- 0
opfit_tree$Do(function(node){
#i <<- i+1
#node$name <- opfit$frame[i,"var"]
## below: tanvi edit
if(node$isRoot){
node$name <- "root"
} else{
node$name <- paste(node$parent$splitname, node$splitLevel)
}
})
tree_structure <- capture.output(opfit_tree)
list(tree_structure[2:length(tree_structure)])
}
)
}
if(check==TRUE){
message(paste0("This generated tree structure appears ",max(table(sapply(check_tree,function(i){paste(i,collapse = "")})))," times in 100 iterations"))
# # print(check_tree)
message("Summary of tree structures:")
check_tree1 <- lapply(check_tree,cbind)
check <- lapply(unique(check_tree1),function(i){
message(paste0("The following tree structure appears ",sum(sapply(check_tree1,function(j){identical(i,j)}))," times in 100 iterations:"))
# print(i)
})
}
# set up propensity score
if(nchar(ps_indicator)>0){
# contruct tree
tree <- causalTree(formula,
# specify the model, outcome variable ~ covariates
data = trainset, # specify the dataset to be used
treatment = trainset[,treatment_indicator],
# specify the treatment variable, must be 0/1 indicator
split.Rule = "CT",
# specify split rule; for causal tree, use "CT"
# NOTE: there are four different splitting rules,
# they are different in the cross-validation criteria used
# to determine the tree structure
# 1 - TOT
# 2 - CT
# 3 - fit
# 4 - tstats
# 5 - totD
# 6 - ctD
# 7 - fitD
# 8 - tstatsD
cv.option = "CT", # specifify cross validation method
# and there are four different methods -- tot, ct, fit, tstats
# for causal tree, use "CT"
split.Honest = T, cv.Honest = T, split.Bucket = F,
xval = crossvalidation,
# number of cross-validations to do and the default number is 20
cp = 0,
propensity = trainset[,ps_indicator],
# specify the propensity score; if is not specified, it will use sum(treatment) / nobs as the propensity score
minsize = minsize # minimum number of treated observations, control observations in a leaf
# the default minimum size is 20, according to Jennie and Yu Xie's paper (Estimating Heterogeneous Treatment Effects with Observational Data, 2012)
)}else{
tree <- causalTree(formula,
data = trainset,
treatment = trainset[,treatment_indicator],
split.Rule = "CT",
cv.option = "CT",
split.Honest = T, cv.Honest = F, split.Bucket = F,
xval = crossvalidation,
cp = 0,
minsize = minsize
)
}
# prune this tree model to avoid the overfitting issues
# get the complexity parameter (cp) to be trimmed--the least important splits
opcp <- tree$cptable[,1][which.min(tree$cptable[,4])]
# recursively snipping off the least important tree based on the complexity parameter (cp)
opfit <- rpart::prune(tree, opcp)
# return the predicted heterogeneous treatment effect, e.g., predictedTE
hte_effect <- opfit$frame$yval[opfit$where]
# if drawplots is TRUE, make plots and export the plots
if(drawplot==TRUE){
ttable <- data.frame() # *change here, change from global env to local env
makeplots(negative=negative, opfit.=opfit,gph=tempdir(),trainset,
covariates,outcomevariable,data,ttable,varlabel,
maintitle,#no_indicater,
legend.x,legend.y)
}else{
message(c('Drawplot = ', drawplot))
}
# export the results:
output <- cbind(hte_effect)
output <- as.data.frame(output)
colnames(output) <- paste0(outcomevariable,"_predictedTE")
return(list(predictedTE = output, tree = opfit))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.