Nothing
#' Generate an htmlTable using tidy data as input
#'
#' This function maps columns from the input data, `x`, to [htmlTable()] parameters.
#' It's designed to provide a fluent interface for those familiar with the `tidyverse` ecosystem.
#'
#' @param x Tidy data used to build the `htmlTable`
#' @param value Column containing values for individual table cells. Defaults to "value" (same as [tidyr::pivot_wider]).
#' @param header Column in `x` specifying column headings
#' @param rnames Column in `x` specifying row names. Defaults to "name" (same as [tidyr::pivot_wider()]).
#' @param rgroup Column in `x` specifying row groups.
#' @param hidden_rgroup Strings indicating `rgroup` values to be hidden.
#' @param cgroup Columns in `x` specifying the column groups.
#' @param tspanner Column in `x` specifying `tspanner` groups.
#' @param hidden_tspanner Strings indicating `tspanner` values to be hidden.
#' @param skip_removal_warning Boolean to suppress warnings when removing `NA` columns.
#' @param rnames_unique Designates unique row names when regular names lack uniqueness.
#' @param table_fn Function to format the table, defaults to [htmlTable()].
#' @param ... Additional arguments passed to [htmlTable()].
#'
#' @section Column-mapping:
#'
#' Columns from `x` are mapped (transformed) to specific parameters of the [htmlTable()]
#' The following columns are converted to match the intended input structure:
#'
#' * `value`
#' * `header`
#' * `rnames`
#' * `rgroup`
#' * `cgroup`
#' * `tspanner`
#'
#' Each combination of the variables in `x` should be unique to map correctly to the output table.
#'
#' @section Row uniqueness:
#'
#' Usually each row should have a unique combination of the mappers.
#' Sometimes though rows come in a distinct order and the order identifies
#' the row more than the name. E.g. if we are identifying bone fractures using the
#' AO-classification we will have classes ranging in the form of:
#'
#' - A
#' - A1
#' - A1.1
#' - A2
#' - A2.1
#' - A2.2
#' - B
#' - ...
#'
#' we can simplify the names while retaining the key knowledge to:
#'
#' - A
#' - .1
#' - ...1
#' - .2
#' - ...1
#' - ...2
#' - B
#' - ...
#'
#' This will though result in non-unique rows and thus we need to provide the original
#' names in addition to the `rnames` argument. To do this we have `rnames_unique` as a parameter,
#' without this `tidyHtmlTable` we risk unintended merging of cells, generating > 1 value per cell.
#'
#' *Note* it is recommended that you verify with the full names just to make sure that
#' any unexpected row order change has happened in the underlying pivot functions.
#'
#' @section Sorting:
#'
#' Rows can be pre-sorted using [dplyr::arrange()] before passing to `tidyHtmlTable`.
#' Column sorting is based on `arrange(cgroup, header)`. If you want to sort in non-alphabetic
#' order you can provide a factor variable and that information will be retained.
#'
#' @section Hidden values:
#'
#' `htmlTable` Allows for some values within `rgroup`,
#' `cgroup`, etc. to be specified as `""`. The following parameters
#' allow for specific values to be treated as if they were a string of length
#' zero in the `htmlTable` function.
#'
#' * `hidden_rgroup`
#' * `hidden_tspanner`
#'
#' @section Simple tibble output:
#'
#' The tibble discourages the use of row names. There is therefore a convenience
#' option for `tidyHtmlTable` where you can use the function just as you
#' would with [htmlTable()] where `rnames` is populated with
#' the `rnames` argument provided using `tidyselect` syntax (defaults to
#' the "names" column if present int the input data).
#'
#' @section Additional dependencies:
#'
#' In order to run this function you also must have \pkg{dplyr},
#' \pkg{tidyr}, \pkg{tidyselect} and \pkg{purrr}
#' packages installed. These have been removed due to
#' the additional 20 Mb that these dependencies added (issue #47).
#' *Note:* if you use \pkg{tidyverse} it will already have
#' all of these and you do not need to worry.
#'
#'
#' @return Returns the HTML code that, when rendered, displays a formatted table.
#' @export
#' @seealso [htmlTable()]
#' @example inst/examples/tidyHtmlTable_example.R
tidyHtmlTable <- function(x,
value,
header,
rnames,
rgroup,
hidden_rgroup,
cgroup,
tspanner,
hidden_tspanner,
skip_removal_warning = getOption("htmlTable.skip_removal_warning", FALSE),
rnames_unique,
table_fn = htmlTable,
...) {
UseMethod("tidyHtmlTable")
}
#' @export
tidyHtmlTable.default <- function(x,
value,
header,
rnames,
rgroup,
hidden_rgroup,
cgroup,
tspanner,
hidden_tspanner,
skip_removal_warning = getOption("htmlTable.skip_removal_warning", FALSE),
rnames_unique,
table_fn = htmlTable,
...) {
stop("x must be of class data.frame")
}
#' @export
tidyHtmlTable.data.frame <- function(x,
value,
header,
rnames,
rgroup,
hidden_rgroup,
cgroup,
tspanner,
hidden_tspanner,
skip_removal_warning = FALSE,
rnames_unique,
table_fn = htmlTable,
...) {
# You need the suggested package for this function
safeLoadPkg("dplyr")
safeLoadPkg("tidyr")
safeLoadPkg("tidyselect")
safeLoadPkg("purrr")
safeLoadPkg("rlang")
# Re-attach style to the new object at the end
style_list <- prGetAttrWithDefault(x, which = style_attribute_name, default = NULL)
# Check if x is a grouped tbl_df
if (dplyr::is.grouped_df(x)) {
x <- dplyr::ungroup(x)
}
if (missing(value) && missing(header)) {
# Sometimes we just want to print a tibble and these don't allow for
# rownames and htmlTable becomes a little annoying why we want to
# have a tidyverse compatible option
if (missing(rnames)) {
orgName <- rlang::as_name("name")
} else {
orgName <- substitute(rnames)
}
args <- list(...)
args$x <- x %>% dplyr::select(-{{ orgName }})
args$rnames <- x[[as.character(orgName)]]
if (is.null(args$rowlabel)) {
args$rowlabel <- as.character(orgName)
}
return(do.call(htmlTable, args))
}
tidyTableDataList <- list(
value = prAssertAndRetrieveValue(x, value),
header = prAssertAndRetrieveValue(x, header),
rnames = prAssertAndRetrieveValue(x, rnames, name = "name"),
rnames_unique = prAssertAndRetrieveValue(x, rnames_unique, optional = TRUE),
rgroup = prAssertAndRetrieveValue(x, rgroup, optional = TRUE),
cgroup = prAssertAndRetrieveValue(x, cgroup, optional = TRUE, maxCols = getOption("htmlTabl.tidyHtmlTable.maxCols", default = 5)),
tspanner = prAssertAndRetrieveValue(x, tspanner, optional = TRUE)
) %>%
purrr::keep(~ !is.null(.))
checkUniqueness(tidyTableDataList)
tidyTableDataList %<>% removeRowsWithNA(skip_removal_warning = skip_removal_warning)
# Create tables from which to gather row, column, and tspanner names
# and indices
rowRefTbl <- getRowTbl(tidyTableDataList)
colRefTbl <- getColTbl(tidyTableDataList)
# Format the values for display
formatted_df <- tidyTableDataList %>%
prBindDataListIntoColumns() %>%
innerJoinByCommonCols(colRefTbl) %>%
innerJoinByCommonCols(rowRefTbl) %>%
dplyr::select(r_idx, c_idx, value) %>%
dplyr::mutate_at(dplyr::vars(value), as.character) %>%
# It is important to sort the rows as below or the data won't be properly
# displayed, i.e. there will be primarily be a mismatch between columns
dplyr::arrange(r_idx) %>%
tidyr::pivot_wider(names_from = "c_idx") %>%
dplyr::select(-r_idx)
# Hide row groups specified in hidden_rgroup
if (!missing(hidden_rgroup)) {
rowRefTbl <- rowRefTbl %>%
dplyr::mutate(rgroup = ifelse(rgroup %in% hidden_rgroup, "", rgroup))
}
# Hide tspanners specified in hidden_tspanner
if (!missing(hidden_tspanner)) {
rowRefTbl <- rowRefTbl %>%
dplyr::mutate(tspanner = ifelse(tspanner %in% hidden_tspanner, "", tspanner))
}
# Now order the columns so that cgroup and headers match
formatted_df <- formatted_df[, order(colnames(formatted_df) %>% as.numeric())]
# Get names and indices for row groups and tspanners
htmlTable_args <- list(
formatted_df, # Skip names for direct compatibility with Hmisc::latex
rnames = rowRefTbl %>% dplyr::pull(rnames),
header = colRefTbl %>% dplyr::pull(header),
...
)
if (!missing(rgroup)) {
# This will take care of a problem in which adjacent row groups
# with the same value will cause rgroup and tspanner collision
comp_val <- rowRefTbl %>% dplyr::pull(rgroup)
if (!missing(tspanner)) {
comp_val <- paste0(
comp_val,
rowRefTbl %>% dplyr::pull(tspanner)
)
}
rcnts <- prepGroupCounts(comp_val)
htmlTable_args$rgroup <- rowRefTbl %>%
dplyr::slice(rcnts$idx) %>%
dplyr::pull(rgroup)
htmlTable_args$n.rgroup <- rcnts$n
}
if (!missing(tspanner)) {
tcnt <- prepGroupCounts(rowRefTbl %>% dplyr::pull(tspanner))
htmlTable_args$tspanner <- tcnt$names
htmlTable_args$n.tspanner <- tcnt$n
}
# Get names and indices for column groups
if (!missing(cgroup)) {
cg <- list(names = list(), n = list())
noCgroup <- 1
if (is.data.frame(tidyTableDataList$cgroup)) {
noCgroup <- ncol(tidyTableDataList$cgroup)
}
for (colNo in 1:noCgroup) {
counts <- prepGroupCounts(colRefTbl %>% dplyr::pull(colNo))
cg$names[[colNo]] <- counts$names
cg$n[[colNo]] <- counts$n
}
maxLen <- sapply(cg$names, length) %>% max()
for (colNo in 1:length(cg$names)) {
missingNA <- maxLen - length(cg$names[[colNo]])
if (missingNA > 0) {
cg$names[[colNo]] <- c(cg$names[[colNo]], rep(NA, times = missingNA))
cg$n[[colNo]] <- c(cg$n[[colNo]], rep(NA, times = missingNA))
}
}
if (length(cg$names) == 1) {
htmlTable_args$cgroup <- cg$names[[1]]
htmlTable_args$n.cgroup <- cg$n[[1]]
} else {
htmlTable_args$cgroup <- do.call(rbind, cg$names)
htmlTable_args$n.cgroup <- do.call(rbind, cg$n)
}
}
if (!is.null(style_list)) {
attr(htmlTable_args[[1]], style_attribute_name) <- style_list
}
ret <- do.call(table_fn, htmlTable_args)
attr(ret, "htmlTable_args") <- htmlTable_args
return(ret)
}
`c_idx` <- "Fix no visible binding"
`r_idx` <- "Fix no visible binding"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.