ggof: Graphical Goodness of Fit

ggofR Documentation

Graphical Goodness of Fit

Description

Graphical comparison between two vectors (numeric, ts or zoo), with several numerical goodness of fit printed as a legend.
Missing values in observed and/or simulated values can removed before the computations.

Usage

ggof(sim, obs, na.rm = TRUE, dates, date.fmt = "%Y-%m-%d", 
     pt.style = "ts", ftype = "o",  FUN, 
     stype="default", season.names=c("Winter", "Spring", "Summer", "Autumn"),
     gof.leg = TRUE,  digits=2, 
     gofs=c("ME", "MAE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE", 
             "rNSE", "d", "md", "rd", "r", "R2", "bR2", "KGE", "VE"),
     legend, leg.cex=1,
     tick.tstep = "auto", lab.tstep = "auto", lab.fmt=NULL,
     cal.ini=NA, val.ini=NA,
     main, xlab = "Time", ylab=c("Q, [m3/s]"),  
     col = c("blue", "black"), 
     cex = c(0.5, 0.5), cex.axis=1.2, cex.lab=1.2,
     lwd = c(1, 1), lty = c(1, 3), pch = c(1, 9), ...)

Arguments

sim

numeric or zoo object with with simulated values

obs

numeric or zoo object with observed values

na.rm

a logical value indicating whether 'NA' should be stripped before the computation proceeds.
When an 'NA' value is found at the i-th position in obs OR sim, the i-th value of obs AND sim are removed before the computation.

dates

character, factor, Date or POSIXct object indicating how to obtain the dates for the corresponding values in the sim and obs time series
If dates is a character or factor, it is converted into Date/POSIXct class, using the date format specified by date.fmt

date.fmt

OPTIONAL. character indicating the format in which the dates are stored in dates, cal.ini and val.ini. See format in as.Date. Default value is %Y-%m-%d
ONLY required when class(dates)=="character" or class(dates)=="factor" or when cal.ini and/or val.ini is provided.

pt.style

Character indicating if the 2 ts have to be plotted as lines or bars. When ftype is NOT o, it only applies to the annual values. Valid values are:
-) ts : (default) each ts is plotted as a lines along the 'x' axis
-) bar: both series are plotted as barplots.

ftype

Character indicating how many plots are desired by the user. Valid values are:
-) o : only the original sim and obs time series are plotted
-) dm : it assumes that sim and obs are daily time series and Daily and Monthly values are plotted
-) ma : it assumes that sim and obs are daily or monthly time series and Monthly and Annual values are plotted
-) dma : it assumes that sim and obs are daily time series and Daily, Monthly and Annual values are plotted
-) seasonal: seasonal values are plotted. See stype and season.names

FUN

OPTIONAL, ONLY required when ftype is in c('dm', 'ma', 'dma', 'seasonal'). Function that have to be applied for transforming teh original ts into monthly, annual or seasonal time step (e.g., for precipitation FUN MUST be sum, for temperature and flow time series, FUN MUST be mean)

stype

OPTIONAL, only used when ftype=seasonal.
character, indicating whath weather seasons will be used for computing the output. Possible values are:
-) default => "winter"= DJF = Dec, Jan, Feb; "spring"= MAM = Mar, Apr, May; "summer"= JJA = Jun, Jul, Aug; "autumn"= SON = Sep, Oct, Nov
-) FrenchPolynesia => "winter"= DJFM = Dec, Jan, Feb, Mar; "spring"= AM = Apr, May; "summer"= JJAS = Jun, Jul, Aug, Sep; "autumn"= ON = Oct, Nov

season.names

OPTIONAL, only used when ftype=seasonal.
character of length 4 indicating the names of each one of the weather seasons defined by stype.These names are only used for plotting purposes

gof.leg

logical, indicating if several numerical goodness of fit have to be computed between sim and obs, and plotted as a legend on the graph. If leg.gof=TRUE, then x is considered as observed and y as simulated values (for some gof functions this is important).

digits

OPTIONAL, only used when leg.gof=TRUE. Numeric, representing the decimal places used for rounding the goodness-of-fit indexes.

gofs

character, with one or more strings indicating the goodness-of-fit measures to be shown in the legend of the plot when gof.leg=TRUE.
Possible values when ftype!='seasonal' are in c("ME", "MAE", "MSE", "RMSE", "NRMSE", "PBIAS", "RSR", "rSD", "NSE", "mNSE", "rNSE", "d", "md", "rd", "cp", "r", "R2", "bR2", "KGE", "VE")
Possible values when ftype='seasonal' are in c("ME", "RMSE", "PBIAS", "RSR", "NSE", "d", "R2", "KGE", "VE")

legend

character of length 2 to appear in the legend.

leg.cex

OPTIONAL. ONLY used when leg.gof=TRUE. Character expansion factor for drawing the legend, *relative* to current 'par("cex")'. Used for text, and provides the default for 'pt.cex' and 'title.cex'. Default value = 1

tick.tstep

character, indicating the time step that have to be used for putting the ticks on the time axis. Valid values are: auto, years, months,weeks, days, hours, minutes, seconds.

lab.tstep

character, indicating the time step that have to be used for putting the labels on the time axis. Valid values are: auto, years, months,weeks, days, hours, minutes, seconds.

lab.fmt

Character indicating the format to be used for the label of the axis. See lab.fmt in drawTimeAxis.

cal.ini

OPTIONAL. Character, indicating the date in which the calibration period started.
When cal.ini is provided, all the values in obs and sim with dates previous to cal.ini are SKIPPED from the computation of the goodness-of-fit measures (when gof.leg=TRUE), but their values are still plotted, in order to examine if the warming up period was too short, acceptable or too long for the chosen calibration period. In addition, a vertical red line in drawn at this date.

val.ini

OPTIONAL. Character, the date in which the validation period started.
ONLY used for drawing a vertical red line at this date.

main

character representing the main title of the plot.

xlab

label for the 'x' axis.

ylab

label for the 'y' axis.

col

character, representing the colors of sim and obs

cex

numeric, representing the values controlling the size of text and symbols of 'x' and 'y' with respect to the default

cex.axis

numeric, representing the magnification to be used for the axis annotation relative to 'cex'. See par.

cex.lab

numeric, representing the magnification to be used for x and y labels relative to the current setting of 'cex'. See par.

lwd

vector with the line width of sim and obs

lty

numeric with the line type of sim and obs

pch

numeric with the type of symbol for x and y. (e.g., 1: white circle; 9: white rhombus with a cross inside)

...

further arguments passed to or from other methods.

Details

Plots observed and simulated values in the same graph.

If gof.leg=TRUE, it computes the numerical values of:
'me', 'mae', 'rmse', 'nrmse', 'PBIAS', 'RSR, 'rSD', 'NSE', 'mNSE', 'rNSE', 'd', 'md, 'rd', 'cp', 'r', 'r.Spearman', 'R2', 'bR2', 'KGE', 'VE'

Value

The output of the gof function is a matrix with one column only, and the following rows:

ME

Mean Error

MAE

Mean Absolute Error

MSE

Mean Squared Error

RMSE

Root Mean Square Error

ubRMSE

Unbiased Root Mean Square Error

NRMSE

Normalized Root Mean Square Error ( -100% <= NRMSE <= 100% )

PBIAS

Percent Bias ( -Inf <= PBIAS <= Inf [%] )

RSR

Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ( 0 <= RSR <= +Inf )

rSD

Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE

Nash-Sutcliffe Efficiency ( -Inf <= NSE <= 1 )

mNSE

Modified Nash-Sutcliffe Efficiency ( -Inf <= mNSE <= 1 )

rNSE

Relative Nash-Sutcliffe Efficiency ( -Inf <= rNSE <= 1 )

wNSE

Weighted Nash-Sutcliffe Efficiency ( -Inf <= wNSE <= 1 )

wsNSE

Weighted Seasonal Nash-Sutcliffe Efficiency ( -Inf <= wsNSE <= 1 )

d

Index of Agreement ( 0 <= d <= 1 )

dr

Refined Index of Agreement ( -1 <= dr <= 1 )

md

Modified Index of Agreement ( 0 <= md <= 1 )

rd

Relative Index of Agreement ( 0 <= rd <= 1 )

cp

Persistence Index ( 0 <= cp <= 1 )

r

Pearson Correlation coefficient ( -1 <= r <= 1 )

R2

Coefficient of Determination ( 0 <= R2 <= 1 )

bR2

R2 multiplied by the coefficient of the regression line between sim and obs
( 0 <= bR2 <= 1 )

VE

Volumetric efficiency between sim and obs
( -Inf <= VE <= 1)

KGE

Kling-Gupta efficiency between sim and obs
( -Inf <= KGE <= 1 )

KGElf

Kling-Gupta Efficiency for low values between sim and obs
( -Inf <= KGElf <= 1 )

KGEnp

Non-parametric version of the Kling-Gupta Efficiency between sim and obs
( -Inf <= KGEnp <= 1 )

KGEkm

Knowable Moments Kling-Gupta Efficiency between sim and obs
( -Inf <= KGEnp <= 1 )

The following outputs are only produced when both sim and obs are zoo objects:

sKGE

Split Kling-Gupta Efficiency between sim and obs
( -Inf <= sKGE <= 1 ). Only computed when both sim and obs are zoo objects

APFB

Annual Peak Flow Bias ( 0 <= APFB <= Inf )

HBF

High Flow Bias ( 0 <= HFB <= Inf )

r.Spearman

Spearman Correlation coefficient ( -1 <= r.Spearman <= 1 ). Only computed when do.spearman=TRUE

pbiasfdc

PBIAS in the slope of the midsegment of the Flow Duration Curve

Author(s)

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srinivasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician, 28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Goldscheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi: 10.1175/2010JHM1223.1.

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018). Simulating runoff under changing climatic conditions: A framework for model improvement. Water Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods, 15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng, J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229. doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.: (2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models, Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Integrating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071. doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953. doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080. doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J. Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O'Donnell, J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82, doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174. doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr 2012, EGU2012-11549-1.

See Also

gof, plot2, ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, d, dr, md, rd, cp, rPearson, R2, br2, KGE, KGElf, KGEnp, sKGE, VE, rSpearman, pbiasfdc

Examples

obs <- 1:10
sim <- 2:11

## Not run: 
ggof(sim, obs)

## End(Not run)

##################
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

# Generating a simulated daily time series, initially equal to the observed series
sim <- obs 

# Getting the numeric goodness of fit for the "best" (unattainable) case
gof(sim=sim, obs=obs)

# Randomly changing the first 2000 elements of 'sim', by using a normal distribution 
# with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)

# Getting the new numeric goodness-of-fit measures
gof(sim=sim, obs=obs)

# Getting the graphical representation of 'obs' and 'sim' along with the numeric 
# goodness-of-fit measures for the daily and monthly time series 
## Not run: 
ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)

## End(Not run)

# Getting the graphical representation of 'obs' and 'sim' along with some numeric 
# goodness-of-fit measures for the seasonal time series 
## Not run: 
ggof(sim=sim, obs=obs, ftype="seasonal", FUN=mean)

## End(Not run)

# Computing the daily residuals 
# even if this is a dummy example, it is enough for illustrating the capability
r <- sim-obs

# Summarizing and plotting the residuals
## Not run: 
library(hydroTSM)

# summary
smry(r) 

# daily, monthly and annual plots, boxplots and histograms
hydroplot(r, FUN=mean)

# seasonal plots and boxplots
hydroplot(r, FUN=mean, pfreq="seasonal")

## End(Not run)


hydroGOF documentation built on Nov. 4, 2024, 5:08 p.m.