gof | R Documentation |
Numerical goodness-of-fit measures between sim
and obs
, with treatment of missing values. Several performance indices for comparing two vectors, matrices or data.frames
gof(sim, obs, ...)
## Default S3 method:
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,
j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'matrix'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,
j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'data.frame'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,
j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'zoo'
gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE,
j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"),
lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
sim |
numeric, zoo, matrix or data.frame with simulated values |
obs |
numeric, zoo, matrix or data.frame with observed values |
na.rm |
a logical value indicating whether 'NA' should be stripped before the computation proceeds. |
do.spearman |
logical. Indicates if the Spearman correlation has to be computed. The default is FALSE. |
do.pbfdc |
logical. Indicates if the Percent Bias in the Slope of the midsegment of the Flow Duration Curve ( |
j |
argument passed to the |
lambda |
argument passed to the |
norm |
argument passed to the |
s |
argument passed to the |
method |
argument passed to the |
lQ.thr |
[OPTIONAL]. Only used for the computation of the |
hQ.thr |
[OPTIONAL]. Only used for the computation of the |
start.month |
[OPTIONAL]. Only used for the computation of the split KGE ( numeric in [1:12] indicating the starting month of the (hydrological) year. Numeric values in [1, 12] represent months in [January, December]. By default |
digits |
decimal places used for rounding the goodness-of-fit indexes. |
fun |
function to be applied to The first argument MUST BE a numeric vector with any name (e.g., |
... |
arguments passed to |
epsilon.type |
argument used to define a numeric value to be added to both It is was designed to allow the use of logarithm and other similar functions that do not work with zero values. Valid values of 1) "none": 2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is added to both 3) "otherFactor": the numeric value defined in the 4) "otherValue": the numeric value defined in the |
epsilon.value |
-) when |
The output of the gof
function is a matrix with one column only, and the following rows:
ME |
Mean Error |
MAE |
Mean Absolute Error |
MSE |
Mean Squared Error |
RMSE |
Root Mean Square Error |
ubRMSE |
Unbiased Root Mean Square Error |
NRMSE |
Normalized Root Mean Square Error ( -100% <= NRMSE <= 100% ) |
PBIAS |
Percent Bias ( -Inf <= PBIAS <= Inf [%] ) |
RSR |
Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ( 0 <= RSR <= +Inf ) |
rSD |
Ratio of Standard Deviations, rSD = sd(sim) / sd(obs) |
NSE |
Nash-Sutcliffe Efficiency ( -Inf <= NSE <= 1 ) |
mNSE |
Modified Nash-Sutcliffe Efficiency ( -Inf <= mNSE <= 1 ) |
rNSE |
Relative Nash-Sutcliffe Efficiency ( -Inf <= rNSE <= 1 ) |
wNSE |
Weighted Nash-Sutcliffe Efficiency ( -Inf <= wNSE <= 1 ) |
wsNSE |
Weighted Seasonal Nash-Sutcliffe Efficiency ( -Inf <= wsNSE <= 1 ) |
d |
Index of Agreement ( 0 <= d <= 1 ) |
dr |
Refined Index of Agreement ( -1 <= dr <= 1 ) |
md |
Modified Index of Agreement ( 0 <= md <= 1 ) |
rd |
Relative Index of Agreement ( 0 <= rd <= 1 ) |
cp |
Persistence Index ( 0 <= cp <= 1 ) |
r |
Pearson Correlation coefficient ( -1 <= r <= 1 ) |
R2 |
Coefficient of Determination ( 0 <= R2 <= 1 ) |
bR2 |
R2 multiplied by the coefficient of the regression line between |
VE |
Volumetric efficiency between |
KGE |
Kling-Gupta efficiency between |
KGElf |
Kling-Gupta Efficiency for low values between |
KGEnp |
Non-parametric version of the Kling-Gupta Efficiency between |
KGEkm |
Knowable Moments Kling-Gupta Efficiency between |
The following outputs are only produced when both sim
and obs
are zoo objects:
sKGE |
Split Kling-Gupta Efficiency between |
APFB |
Annual Peak Flow Bias ( 0 <= APFB <= Inf ) |
HBF |
High Flow Bias ( 0 <= HFB <= Inf ) |
r.Spearman |
Spearman Correlation coefficient ( -1 <= r.Spearman <= 1 ). Only computed when |
pbiasfdc |
PBIAS in the slope of the midsegment of the Flow Duration Curve |
obs
and sim
has to have the same length/dimension.
Missing values in obs
and/or sim
can be removed before the computations, depending on the value of na.rm
.
Although r
and r2
have been widely used for model evaluation, these statistics are over-sensitive to outliers and insensitive to additive and proportional differences between model predictions and measured data (Legates and McCabe, 1999)
Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>
Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.
Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srinivasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.
Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.
Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician, 28(1), 19-20. doi:10.1080/00031305.1974.10479056.
Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-1250. doi:10.5194/gmd-7-1247-2014.
Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Goldscheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-2397-2023.
Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.
Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi: 10.1175/2010JHM1223.1.
Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018). Simulating runoff under changing climatic conditions: A framework for model improvement. Water Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.
Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.
Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.
Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.
Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.
Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.
Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.
Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.
Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.
Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.
Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019.
Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.
Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods, 15(2), 42. doi:10.22237/jmasm/1478004000
Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.
Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng, J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229. doi:10.5194/hess-25-4209-2021.
Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.: (2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models, Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.
Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900
Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-6.
Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.
Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.
Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Integrating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071. doi:10.1016/j.jhydrol.2024.131071.
Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953. doi:/10.1080/02626667.2018.1552002.
Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.
Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE criterion. doi:10.5194/hess-22-4583-2018.
Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080. doi:10.1002/hyp.6825.
Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.
Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-2), 30, doi:10.1016/j.jhydrol.2007.12.025
Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.
Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J. Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45-58). Appleton-Century-Crofts. doi:10.1037/11491-005
Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.
Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-1694(95)02918-4
Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716.
Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184–194. doi:10.1080/02723646.1981.10642213.
Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-3048-8_23.
Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O'Donnell, J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.
Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82, doi:10.3354/cr030079.
Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.
Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.
Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174. doi:10.1016/j.envsoft.2015.08.012
Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr 2012, EGU2012-11549-1.
ggof
, me
, mae
, mse
, rmse
, ubRMSE
,
nrmse
, pbias
, rsr
, rSD
, NSE
, mNSE
,
rNSE
, wNSE
, wsNSE
, d
, dr
, md
,
rd
, cp
, rPearson
, R2
, br2
, VE
,
KGE
, KGElf
, KGEnp
, , KGEkm
, sKGE
, APFB
,
HFB
, rSpearman
, pbiasfdc
##################
# Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
gof(sim, obs)
obs <- 1:10
sim <- 2:11
gof(sim, obs)
##################
# Example 2:
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts
# Generating a simulated daily time series, initially equal to the observed series
sim <- obs
# Computing the 'gof' for the "best" (unattainable) case
gof(sim=sim, obs=obs)
##################
# Example 3: gof for simulated values equal to observations plus random noise
# on the first half of the observed values.
# This random noise has more relative importance for low flows than
# for medium and high flows.
# Randomly changing the first 1826 elements of 'sim', by using a normal distribution
# with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)
gof(sim=sim, obs=obs)
##################
# Example 4: gof for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' during computations.
gof(sim=sim, obs=obs, fun=log)
# Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
gof(sim=lsim, obs=lobs)
##################
# Example 5: gof for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
# during computations
gof(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")
# Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)
##################
# Example 6: gof for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding a user-defined constant
# during computations
eps <- 0.01
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)
# Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)
##################
# Example 7: gof for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and using a user-defined factor
# to multiply the mean of the observed values to obtain the constant
# to be added to 'sim' and 'obs' during computations
fact <- 1/50
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)
# Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)
##################
# Example 8: gof for simulated values equal to observations plus random noise
# on the first half of the observed values and applying a
# user-defined function to 'sim' and 'obs' during computations
fun1 <- function(x) {sqrt(x+1)}
gof(sim=sim, obs=obs, fun=fun1)
# Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
gof(sim=sim1, obs=obs1)
# Storing a matrix object with all the GoFs:
g <- gof(sim, obs)
# Getting only the RMSE
g[4,1]
g["RMSE",]
## Not run:
# Writing all the GoFs into a TXT file
write.table(g, "GoFs.txt", col.names=FALSE, quote=FALSE)
# Getting the graphical representation of 'obs' and 'sim' along with the
# numeric goodness of fit
ggof(sim=sim, obs=obs)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.