pbiasfdc | R Documentation |
Percent Bias in the slope of the midsegment of the flow duration curve (FDC) [%]. It is related to the vertical soil moisture redistribution.
pbiasfdc(sim, obs, ...)
## Default S3 method:
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,
plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'data.frame'
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,
plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'matrix'
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,
plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
## S3 method for class 'zoo'
pbiasfdc(sim, obs, lQ.thr=0.6, hQ.thr=0.1, na.rm=TRUE,
plot=TRUE, verbose=FALSE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA)
sim |
numeric, zoo, matrix or data.frame with simulated values |
obs |
numeric, zoo, matrix or data.frame with observed values |
lQ.thr |
numeric, used to classify low flows. All the streamflows with a probability of exceedence larger or equal to |
hQ.thr |
numeric, used to classify high flows. All the streamflows with a probability of exceedence larger or equal to |
na.rm |
a logical value indicating whether 'NA' values should be stripped before the computation proceeds. |
plot |
a logical value indicating if the flow duration curves corresponding to |
verbose |
logical; if TRUE, progress messages are printed |
fun |
function to be applied to The first argument MUST BE a numeric vector with any name (e.g., |
... |
arguments passed to |
epsilon.type |
argument used to define a numeric value to be added to both It is was designed to allow the use of logarithm and other similar functions that do not work with zero values. Valid values of 1) "none": 2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is added to both 3) "otherFactor": the numeric value defined in the 4) "otherValue": the numeric value defined in the |
epsilon.value |
-) when |
Percent Bias in the slope of the midsegment of the flow duration curve, between sim
and obs
.
If sim
and obs
are matrixes, the returned value is a vector, with the Percent Bias in the slope of the midsegment of the flow duration curve, between each column of sim
and obs
.
The result is given in percentage (%).
It requires the hydroTSM package.
Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>
Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716.
fdc, pbias
, mae
, mse
, rmse
, ubRMSE
, nrmse
, ssq
, gof
, ggof
## Not run:
##################
# Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
pbiasfdc(sim, obs)
obs <- 1:10
sim <- 2:11
pbiasfdc(sim, obs)
##################
# Example 2:
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts
# Generating a simulated daily time series, initially equal to the observed series
sim <- obs
# Computing the 'pbiasfdc' for the "best" (unattainable) case
pbiasfdc(sim=sim, obs=obs)
##################
# Example 3: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values.
# This random noise has more relative importance for ow flows than
# for medium and high flows.
# Randomly changing the first 1826 elements of 'sim', by using a normal distribution
# with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)
pbiasfdc(sim=sim, obs=obs)
##################
# Example 4: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' during computations.
pbiasfdc(sim=sim, obs=obs, fun=log)
# Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
pbiasfdc(sim=lsim, obs=lobs)
##################
# Example 5: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
# during computations
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")
# Verifying the previous value, with the epsilon value following Pushpalatha2012
eps <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)
##################
# Example 6: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and adding a user-defined constant
# during computations
eps <- 0.01
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)
# Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)
##################
# Example 7: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values and applying (natural)
# logarithm to 'sim' and 'obs' and using a user-defined factor
# to multiply the mean of the observed values to obtain the constant
# to be added to 'sim' and 'obs' during computations
fact <- 1/50
pbiasfdc(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)
# Verifying the previous value:
eps <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
pbiasfdc(sim=lsim, obs=lobs)
##################
# Example 8: pbiasfdc for simulated values equal to observations plus random noise
# on the first half of the observed values and applying a
# user-defined function to 'sim' and 'obs' during computations
fun1 <- function(x) {sqrt(x+1)}
pbiasfdc(sim=sim, obs=obs, fun=fun1)
# Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
pbiasfdc(sim=sim1, obs=obs1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.