knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(hydrotoolbox)
Sin lugar a dudas, el SNIH posee la más extensa base de datos hidro-meteorológicos (tanto desde el punto de vista espacial como temporal) para la República Argentina (SNIH). En él se pueden encontrar los registros de estaciones desde la Quiaca a Tierra del Fuego, además contiene series que datan de principios del siglo pasado.
Without a doubt, the SNIH has the most extensive hydro-meteorological database (both from the spatial and temporal point of view) for the Argentine Republic (SNIH). In it the user can find the records of stations from La Quiaca to Tierra del Fuego (northernmost and southernmost places respectively), it also contains series dating from the beginning of the last century.
La página web permite descargar las variables medidas en cada estación de
a una por vez. El paquete hydrotoolbox ofrece la posibilidad de leer
estos archivos (formato .xlsx) de manera automática mediante la función
read_snih()
. Al hacerlo, se cargará al Global Environment de R un
data.frame
con los datos del archivo original. Cabe destacar que esta función
rellena automáticamente los vacíos existentes entre registros con NA_real_
.
Las siguientes líneas de código muestran cómo aplicar esta función con la serie
de caudales medios diarios registradas en la estación Guido (provincia de Mendoza).
The website allows you to download the variables measured at each station
one at a time. hydrotoolbox allows to read these files (.xlsx format)
automatically using the read_snih()
function. Doing so will load to the
Global Environment a data.frame
with the data from the original file. It
should be noted that this function automatically fills the gaps between records
with NA_real_
. In the following code lines I show how to apply this function
with the daily mean streamflow series recorded at the Guido station (Mendoza province).
# set path to file path_file <- system.file('extdata', 'snih_qd_guido.xlsx', package = 'hydrotoolbox') # read daily mean streamflow with default column name guido_qd <- read_snih(path = path_file, by = 'day') head(guido_qd) # now we use the function with column name rm(guido_qd) guido_qd <- read_snih(path = path_file, by = 'day', out_name = 'qd(m3/s)') head(guido_qd) # plot the series plot(x = guido_qd[ , 1], y = guido_qd[ , 2], type = 'l', main = 'Daily mean streamflow at Guido (Mendoza basin)', xlab = 'Date', ylab = 'Q(m3/s)', col = 'dodgerblue', lwd = 1, ylim = c(0, 200))
Si bien esta función resulta de gran utilidad, a medida que la cantidad de variables a analizar crece, cargar estas tablas, ordenarlas y modificarlas, se vuelve tarea complicada. La solución que ofrece hydrotoolbox es la de trabajar con los objetos y métodos que el paquete provee. En las siguientes secciones muestro cómo usarlos.
Although this function is very useful, as the number of variables to be analyzed grows, loading these tables, ordering and modifying them becomes a complicated task. The solution that hydrotoolbox offers is to work with the objects and methods that the package provides. In the following sections I will show you how to use them.
Como menciono en los principios de diseño de este paquete
(vignette('package_overview', package = 'hydrotoolbox')
), los datos que se
registran en las estaciones deben almacenarse en un mismo objeto. Por ello
primero habrá que crear dicho objeto (o estación hidro-meteorológica) y luego
usar hm_build_generic()
, un método que permite cargar automáticamente al
objeto todas las variables que la estación real registra.
As I mentioned in the design principles of this package
(vignette ('package_overview', package = 'hydrotoolbox')
), the data that is
recorded in the stations must be stored in the same object. For this reason,
you must first create the object (or hydro-meteorological station) and
then use hm_build_generic()
, a method that allows you to automatically load
all variables to the object that the real world station records.
# in this path you will find the raw example data path <- system.file('extdata', package = 'hydrotoolbox') list.files(path) # we load in a single object (hydromet_station class) # the streamflow and water height series guido <- hm_create() %>% # create the met-station hm_build_generic(path = path, file_name = c('snih_qd_guido.xlsx'), slot_name = c('qd'), FUN = read_excel, by = c('day'), sheet = 1L ) # we can explore the data-set inside it by using hm_show guido %>% hm_show() # you can also rename the column names guido <- guido %>% hm_name(slot_name = 'qd', col_name = 'q(m3/s)') guido %>% hm_show(slot_name = 'qd')
Una de las herramientas más útiles para analizar series hidrológicas y sintetizar
resultados son los gráficos. En esta sección muestro cómo emplear hm_plot()
,
método que permite graficar series de tiempo de forma estática y dinámica a
través de argumentos intuitivos y por lo tanto sencillos de aplicar.
hm_plot()
usa internamente parte de la funcionalidad de los paquetes
ggplot2
y plotly
.
One of the most useful tools to analyze hydrological series and synthesize
results are graphics. In this section I show how to use hm_plot ()
, a method
that allows to plot time series statically and dynamically through intuitive
arguments. hm_plot ()
uses some of the functionality of the ggplot2
and
plotly
packages.
# we ask hydrotolkit to show all the variables # with data in our station guido %>% hm_show() # if want to analyze the daily mean streamflow records guido %>% hm_plot(slot_name = 'qd', col_name = list('q(m3/s)'), interactive = TRUE, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'Q(m3/s)' )
# just show the discharge for the hydrological year 2016/2017 # for publishing guido %>% hm_plot(slot_name = 'qd', col_name = list('q(m3/s)'), interactive = FALSE, line_color = 'dodgerblue', x_lab = 'Date', y_lab = 'Q(m3/s)', from = '2016-07-01', to = '2017-06-30', legend_lab = 'Guido station', title_lab = 'Daily mean discharge' )
En esta sección muestro cómo usar los métodos hm_show()
, hm_report()
y
hm_get()
. Éstos sirven para obtener información cuantitativa acerca de los
datos y para extraer las tablas de la estación.
In this section I show how to use the hm_show()
, hm_report()
and hm_get()
methods. They are used to obtain quantitative information about the data and to
extract out of the hydromet_station
object the data.frames
.
# the show method allows to get an idea about the stored variables guido %>% hm_show() # or maybe we want to specify the slots guido %>% hm_show(slot_name = c('id', 'qd', 'tair') )
# suppose that to get an idea about the basic statistics of our data # and we want to know how many missing data we have guido %>% hm_report(slot_name = 'qd')
# now you want to extract the table guido %>% hm_get(slot_name = 'qd') %>% head()
Como menciono en los principios de diseño del paquete, las modificaciones se
deben poder almacenar en el mismo archivo con el fin de evitar las múltiples
vesiones. En esta sección vamos a ver algunos ejemplos en el uso de los métodos
hm_mutate()
y hm_melt()
.
As I mention in the package design principles, modifications must be able to
be stored in the same file, in order to avoid the multiple versioning issue.
In this section we will see some examples with hm_mutate()
and hm_melt()
methods.
# apply a moving average windows to streamflow records guido %>% hm_mutate(slot_name = 'qd', FUN = mov_avg, k = 10, pos = 'c', out_name = 'mov_avg') %>% # see ?mov_avg() hm_plot(slot_name = 'qd', col_name = list(c('q(m3/s)', 'mov_avg') ), interactive = TRUE, line_color = c('dodgerblue', 'red3'), y_lab = 'Q(m3/s)', legend_lab = c('obs', 'mov_avg') )
NOTE: hm_mutate() can also be combined with the dplyr package function mutate().
# lets say that we want to put together snow water equivalent from Toscas (dgi) # and daily streamflow discharge from Guido (snih) # on the first place we build the Toscas station # dgi file toscas <- hm_create() %>% hm_build_generic(path = path, file_name = 'dgi_toscas.xlsx', slot_name = c('swe', 'tmax', 'tmin', 'tmean', 'rh', 'patm'), by = 'day', FUN = read_dgi, sheet = 1L:6L ) # now we melt the required data in a new object hm_create(class_name = 'compact') %>% hm_melt(melt = c('toscas', 'guido'), slot_name = list(toscas = 'swe', guido = 'qd'), col_name = 'all', out_name = c('swe(mm)', 'qd(m3/s)') ) %>% hm_plot(slot_name = 'compact', col_name = list( c('swe(mm)', 'qd(m3/s)') ), interactive = TRUE, legend_lab = c('swe-Toscas', 'qd-Guido'), line_color = c('dodgerblue', 'red'), y_lab = c('q(m3/s)', 'swe(mm)'), dual_yaxis = c('right', 'left') )
Desde la versión 1.1.0 del paquete, los objetos hydromet_station
y
hydromet_compact
admiten columnas no numéricas. Esto permite agregar
metadatos varios a las series en cuestión.
Since version 1.1.0 of the package, the hydromet_station
and
hydromet_compact
objects support non-numeric columns. This allows to add
several metadata-types to the tables.
# we are going to add come quality-flags to the data library(tibble) my_station <- hm_create(class_name = "station") my_tb <- tibble( date = seq.POSIXt(from = ISOdate(2022, 1, 1, 0, 0, 0), to = ISOdate(2022, 1, 1, 23, 0, 0), by = "hour" ), random_var = runif(n = 24, min = 0, max = 10), unit = "my_units", quality_flag = c(rep("good", 20), rep("bad", 4)) ) my_station <- my_station %>% hm_set(unvar = my_tb) my_station %>% hm_show()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.