BIARinterpolation | R Documentation |
Interpolation of missing values from models fitted by BIARkalman
BIARinterpolation( x, y1, y2, t, delta1 = 0, delta2 = 0, yini1 = 0, yini2 = 0, zero.mean = TRUE, niter = 10, seed = 1234, nsmooth = 1 )
x |
An array with the parameters of the BIAR model. The elements of the array are, in order, the real (phiR) and the imaginary (phiI) part of the coefficient of BIAR model. |
y1 |
Array with the observations of the first time series of the BIAR process. |
y2 |
Array with the observations of the second time series of the BIAR process. |
t |
Array with the irregular observational times. |
delta1 |
Array with the measurements error standard deviations of the first time series of the BIAR process. |
delta2 |
Array with the measurements error standard deviations of the second time series of the BIAR process. |
yini1 |
a single value, initial value of the estimation of the missing value of the first time series of the BIAR process. |
yini2 |
a single value, initial value of the estimation of the missing value of the second time series of the BIAR process. |
zero.mean |
logical; if TRUE, the array y has zero mean; if FALSE, y has a mean different from zero. |
niter |
Number of iterations in which the function nlminb will be repeated. |
seed |
a single value, interpreted as the seed of the random process. |
nsmooth |
a single value; If 1, only one time series of the BIAR process has a missing value. If 2, both time series of the BIAR process have a missing value. |
A list with the following components:
fitted Estimation of the missing values of the BIAR process.
ll Value of the negative log likelihood evaluated in the fitted missing values.
Elorrieta_2021iAR
gentime
, BIARsample
, BIARphikalman
set.seed(6713) n=100 st<-gentime(n) x=BIARsample(n=n,phiR=0.9,phiI=0.3,st=st,rho=0.9) y=x$y y1=y/apply(y,1,sd) yerr1=rep(0,n) yerr2=rep(0,n) biar=BIARkalman(y1=y1[1,],y2=y1[2,],t=st,delta1 = yerr1,delta2=yerr2) biar napos=10 y0=y1 y1[1,napos]=NA xest=c(biar$phiR,biar$phiI) yest=BIARinterpolation(xest,y1=y1[1,],y2=y1[2,],t=st,delta1=yerr1, delta2=yerr2,nsmooth=1) yest$fitted mse=(y0[1,napos]-yest$fitted)^2 print(mse) par(mfrow=c(2,1)) plot(st,x$y[1,],type='l',xlim=c(st[napos-5],st[napos+5])) points(st,x$y[1,],pch=20) points(st[napos],yest$fitted*apply(y,1,sd)[1],col="red",pch=20) plot(st,x$y[2,],type='l',xlim=c(st[napos-5],st[napos+5])) points(st,x$y[2,],pch=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.