View source: R/CIARinterpolation.R
CIARinterpolation | R Documentation |
Interpolation of missing values from models fitted by CIARkalman
CIARinterpolation( x, y, t, delta = 0, yini = 0, zero.mean = TRUE, standardized = TRUE, c = 1, seed = 1234 )
x |
An array with the parameters of the CIAR model. The elements of the array are, in order, the real (phiR) and the imaginary (phiI) part of the coefficient of CIAR model. |
y |
Array with the time series observations. |
t |
Array with the irregular observational times. |
delta |
Array with the measurements error standard deviations. |
yini |
a single value, initial value for the estimation of the missing value of the time series. |
zero.mean |
logical; if TRUE, the array y has zero mean; if FALSE, y has a mean different from zero. |
standardized |
logical; if TRUE, the array y is standardized; if FALSE, y contains the raw time series. |
c |
Nuisance parameter corresponding to the variance of the imaginary part. |
seed |
a single value, interpreted as the seed of the random process. |
A list with the following components:
fitted Estimation of a missing value of the CIAR process.
ll Value of the negative log likelihood evaluated in the fitted missing values.
Elorrieta_2019iAR
gentime
, CIARsample
, CIARkalman
n=100 set.seed(6714) st<-gentime(n) x=CIARsample(n=n,phiR=0.9,phiI=0,st=st,c=1) y=x$y y1=y/sd(y) ciar=CIARkalman(y=y1,t=st) ciar napos=10 y0=y1 y1[napos]=NA xest=c(ciar$phiR,ciar$phiI) yest=CIARinterpolation(xest,y=y1,t=st) yest$fitted mse=(y0[napos]-yest$fitted)^2 print(mse) plot(st,y,type='l',xlim=c(st[napos-5],st[napos+5])) points(st,y,pch=20) points(st[napos],yest$fitted*sd(y),col="red",pch=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.