IARkalman | R Documentation |
Maximum Likelihood Estimation of the IAR model parameter phi. The estimation procedure uses the Kalman Filter to find the maximum of the likelihood.
IARkalman(y, st, delta = 0, zero.mean = TRUE, standardized = TRUE)
y |
Array with the time series observations. |
st |
Array with the irregular observational times. |
delta |
Array with the measurements error standard deviations. |
zero.mean |
logical; if TRUE, the array y has zero mean; if FALSE, y has a mean different from zero. |
standardized |
logical; if TRUE, the array y is standardized; if FALSE, y contains the raw time series. |
A list with the following components:
phi MLE of the phi parameter of the IAR model.
ll Value of the negative log likelihood evaluated in phi.
Eyheramendy_2018iAR
gentime
, IARsample
, arima
,IARphikalman
set.seed(6714) st<-gentime(n=100) y<-IARsample(phi=0.99,st=st,n=100) y<-y$series phi=IARkalman(y=y,st=st)$phi print(phi)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.