View source: R/IARinterpolation.R
IARinterpolation | R Documentation |
Interpolation of missing values from models fitted by IARkalman
IARinterpolation( x, y, st, delta = 0, yini = 0, zero.mean = TRUE, standardized = TRUE )
x |
A given phi coefficient of the IAR model. |
y |
Array with the time series observations. |
st |
Array with the irregular observational times. |
delta |
Array with the measurements error standard deviations. |
yini |
a single value, initial value for the estimation of the missing value of the time series. |
zero.mean |
logical; if TRUE, the array y has zero mean; if FALSE, y has a mean different from zero. |
standardized |
logical; if TRUE, the array y is standardized; if FALSE, y contains the raw time series. |
A list with the following components:
fitted Estimation of a missing value of the IAR process.
ll Value of the negative log likelihood evaluated in the fitted missing values.
Eyheramendy_2018iAR
gentime
, IARsample
, IARkalman
set.seed(6714) st<-gentime(n=100) y<-IARsample(phi=0.99,st=st,n=100) y<-y$series phi=IARkalman(y=y,st=st)$phi print(phi) napos=10 y0=y y[napos]=NA xest=phi yest=IARinterpolation(xest,y=y,st=st) yest$fitted mse=(y0[napos]-yest$fitted)^2 print(mse) plot(st,y,type='l',xlim=c(st[napos-5],st[napos+5])) points(st,y,pch=20) points(st[napos],yest$fitted,col="red",pch=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.