Nothing
#' Vertex connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `vertex.disjoint.paths()` was renamed to `vertex_disjoint_paths()` to create a more
#' consistent API.
#' @inheritParams vertex_disjoint_paths
#' @keywords internal
#' @export
vertex.disjoint.paths <- function(graph, source = NULL, target = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "vertex.disjoint.paths()", "vertex_disjoint_paths()")
vertex_disjoint_paths(graph = graph, source = source, target = target)
} # nocov end
#' Vertex connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `vertex.connectivity()` was renamed to `vertex_connectivity()` to create a more
#' consistent API.
#' @inheritParams vertex_connectivity
#' @keywords internal
#' @export
vertex.connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "vertex.connectivity()", "vertex_connectivity()")
vertex_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' List all minimum \((s,t)\)-cuts of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `stMincuts()` was renamed to `st_min_cuts()` to create a more
#' consistent API.
#' @inheritParams st_min_cuts
#' @keywords internal
#' @export
stMincuts <- function(graph, source, target, capacity = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "stMincuts()", "st_min_cuts()")
st_min_cuts(graph = graph, source = source, target = target, capacity = capacity)
} # nocov end
#' List all (s,t)-cuts of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `stCuts()` was renamed to `st_cuts()` to create a more
#' consistent API.
#' @inheritParams st_cuts
#' @keywords internal
#' @export
stCuts <- function(graph, source, target) { # nocov start
lifecycle::deprecate_soft("2.0.0", "stCuts()", "st_cuts()")
st_cuts(graph = graph, source = source, target = target)
} # nocov end
#' Minimum size vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `minimum.size.separators()` was renamed to `min_separators()` to create a more
#' consistent API.
#' @inheritParams min_separators
#' @keywords internal
#' @export
minimum.size.separators <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "minimum.size.separators()", "min_separators()")
min_separators(graph = graph)
} # nocov end
#' Minimum size vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `minimal.st.separators()` was renamed to `min_st_separators()` to create a more
#' consistent API.
#' @inheritParams min_st_separators
#' @keywords internal
#' @export
minimal.st.separators <- function(graph) { # nocov start
lifecycle::deprecate_soft("2.0.0", "minimal.st.separators()", "min_st_separators()")
min_st_separators(graph = graph)
} # nocov end
#' Vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.separator()` was renamed to `is_separator()` to create a more
#' consistent API.
#' @inheritParams is_separator
#' @keywords internal
#' @export
is.separator <- function(graph, candidate) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.separator()", "is_separator()")
is_separator(graph = graph, candidate = candidate)
} # nocov end
#' Minimal vertex separators
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `is.minimal.separator()` was renamed to `is_min_separator()` to create a more
#' consistent API.
#' @inheritParams is_min_separator
#' @keywords internal
#' @export
is.minimal.separator <- function(graph, candidate) { # nocov start
lifecycle::deprecate_soft("2.0.0", "is.minimal.separator()", "is_min_separator()")
is_min_separator(graph = graph, candidate = candidate)
} # nocov end
#' Minimum cut in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.mincut()` was renamed to `min_cut()` to create a more
#' consistent API.
#' @inheritParams min_cut
#' @keywords internal
#' @export
graph.mincut <- function(graph, source = NULL, target = NULL, capacity = NULL, value.only = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.mincut()", "min_cut()")
min_cut(graph = graph, source = source, target = target, capacity = capacity, value.only = value.only)
} # nocov end
#' Maximum flow in a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.maxflow()` was renamed to `max_flow()` to create a more
#' consistent API.
#' @inheritParams max_flow
#' @keywords internal
#' @export
graph.maxflow <- function(graph, source, target, capacity = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.maxflow()", "max_flow()")
max_flow(graph = graph, source = source, target = target, capacity = capacity)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graph.adhesion()` was renamed to `adhesion()` to create a more
#' consistent API.
#' @inheritParams adhesion
#' @keywords internal
#' @export
graph.adhesion <- function(graph, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graph.adhesion()", "adhesion()")
adhesion(graph = graph, checks = checks)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.disjoint.paths()` was renamed to `edge_connectivity()` to create a more
#' consistent API.
#' @inheritParams edge_connectivity
#' @keywords internal
#' @export
edge.disjoint.paths <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.disjoint.paths()", "edge_connectivity()")
edge_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' Edge connectivity
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `edge.connectivity()` was renamed to `edge_connectivity()` to create a more
#' consistent API.
#' @inheritParams edge_connectivity
#' @keywords internal
#' @export
edge.connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) { # nocov start
lifecycle::deprecate_soft("2.0.0", "edge.connectivity()", "edge_connectivity()")
edge_connectivity(graph = graph, source = source, target = target, checks = checks)
} # nocov end
#' Dominator tree
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `dominator.tree()` was renamed to `dominator_tree()` to create a more
#' consistent API.
#' @inheritParams dominator_tree
#' @keywords internal
#' @export
dominator.tree <- function(graph, root, mode = c("out", "in", "all", "total")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "dominator.tree()", "dominator_tree()")
dominator_tree(graph = graph, root = root, mode = mode)
} # nocov end
# IGraph R package
# Copyright (C) 2006-2012 Gabor Csardi <csardi.gabor@gmail.com>
# 334 Harvard street, Cambridge, MA 02139 USA
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
#
###################################################################
#' Minimum cut in a graph
#'
#' `min_cut()` calculates the minimum st-cut between two vertices in a graph
#' (if the `source` and `target` arguments are given) or the minimum
#' cut of the graph (if both `source` and `target` are `NULL`).
#'
#' The minimum st-cut between `source` and `target` is the minimum
#' total weight of edges needed to remove to eliminate all paths from
#' `source` to `target`.
#'
#' The minimum cut of a graph is the minimum total weight of the edges needed
#' to remove to separate the graph into (at least) two components. (Which is to
#' make the graph *not* strongly connected in the directed case.)
#'
#' The maximum flow between two vertices in a graph is the same as the minimum
#' st-cut, so `max_flow()` and `min_cut()` essentially calculate the same
#' quantity, the only difference is that `min_cut()` can be invoked without
#' giving the `source` and `target` arguments and then minimum of all
#' possible minimum cuts is calculated.
#'
#' For undirected graphs the Stoer-Wagner algorithm (see reference below) is
#' used to calculate the minimum cut.
#'
#' @param graph The input graph.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex (sometimes also called sink).
#' @param capacity Vector giving the capacity of the edges. If this is
#' `NULL` (the default) then the `capacity` edge attribute is used.
#' @param value.only Logical scalar, if `TRUE` only the minimum cut value
#' is returned, if `FALSE` the edges in the cut and a the two (or more)
#' partitions are also returned.
#' @return For `min_cut()` a nuieric constant, the value of the minimum
#' cut, except if `value.only = FALSE`. In this case a named list with
#' components:
#' \item{value}{Numeric scalar, the cut value.}
#' \item{cut}{Numeric vector, the edges in the cut.}
#' \item{partition1}{The vertices in the first partition after the cut
#' edges are removed. Note that these vertices might be actually in
#' different components (after the cut edges are removed), as the graph
#' may fall apart into more than two components.}
#' \item{partition2}{The vertices in the second partition
#' after the cut edges are removed. Note that these vertices might be
#' actually in different components (after the cut edges are removed), as
#' the graph may fall apart into more than two components.}
#' @references M. Stoer and F. Wagner: A simple min-cut algorithm,
#' *Journal of the ACM*, 44 585-591, 1997.
#' @examples
#' g <- make_ring(100)
#' min_cut(g, capacity = rep(1, vcount(g)))
#' min_cut(g, value.only = FALSE, capacity = rep(1, vcount(g)))
#'
#' g2 <- make_graph(c(1, 2, 2, 3, 3, 4, 1, 6, 6, 5, 5, 4, 4, 1))
#' E(g2)$capacity <- c(3, 1, 2, 10, 1, 3, 2)
#' min_cut(g2, value.only = FALSE)
#' @family flow
#' @export
min_cut <- function(graph, source = NULL, target = NULL, capacity = NULL, value.only = TRUE) {
ensure_igraph(graph)
if (is.null(capacity)) {
if ("capacity" %in% edge_attr_names(graph)) {
capacity <- E(graph)$capacity
}
}
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && !is.null(target) ||
is.null(target) && !is.null(source)) {
stop("Please give both source and target or neither")
}
if (!is.null(capacity)) {
capacity <- as.numeric(capacity)
}
value.only <- as.logical(value.only)
on.exit(.Call(R_igraph_finalizer))
if (is.null(target) && is.null(source)) {
if (value.only) {
res <- .Call(R_igraph_mincut_value, graph, capacity)
} else {
res <- .Call(R_igraph_mincut, graph, capacity)
res$cut <- res$cut + 1
res$partition1 <- res$partition1 + 1
res$partition2 <- res$partition2 + 1
if (igraph_opt("return.vs.es")) {
res$cut <- create_es(graph, res$cut)
res$partition1 <- create_vs(graph, res$partition1)
res$partition2 <- create_vs(graph, res$partition2)
}
}
} else {
if (value.only) {
res <- .Call(
R_igraph_st_mincut_value, graph,
as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1, capacity
)
} else {
res <- .Call(
R_igraph_st_mincut, graph,
as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1, capacity
)
# No need to add +1 here; R_igraph_st_mincut() is autogenerated and
# adds +1 already
if (igraph_opt("return.vs.es")) {
res$cut <- create_es(graph, res$cut)
res$partition1 <- create_vs(graph, res$partition1)
res$partition2 <- create_vs(graph, res$partition2)
}
}
}
res
}
#' Vertex connectivity
#'
#' The vertex connectivity of a graph or two vertices, this is recently also
#' called group cohesion.
#'
#' The vertex connectivity of two vertices (`source` and `target`) in
#' a graph is the minimum number of vertices that must be deleted to
#' eliminate all (directed) paths from `source` to `target`.
#' `vertex_connectivity()` calculates this quantity if both the
#' `source` and `target` arguments are given and they're not
#' `NULL`.
#'
#' The vertex connectivity of a pair is the same as the number
#' of different (i.e. node-independent) paths from source to
#' target, assuming no direct edges between them.
#'
#' The vertex connectivity of a graph is the minimum vertex connectivity of all
#' (ordered) pairs of vertices in the graph. In other words this is the minimum
#' number of vertices needed to remove to make the graph not strongly
#' connected. (If the graph is not strongly connected then this is zero.)
#' `vertex_connectivity()` calculates this quantity if neither the
#' `source` nor `target` arguments are given. (I.e. they are both
#' `NULL`.)
#'
#' A set of vertex disjoint directed paths from `source` to `vertex`
#' is a set of directed paths between them whose vertices do not contain common
#' vertices (apart from `source` and `target`). The maximum number of
#' vertex disjoint paths between two vertices is the same as their vertex
#' connectivity in most cases (if the two vertices are not connected by an
#' edge).
#'
#' The cohesion of a graph (as defined by White and Harary, see references), is
#' the vertex connectivity of the graph. This is calculated by
#' `cohesion()`.
#'
#' These three functions essentially calculate the same measure(s), more
#' precisely `vertex_connectivity()` is the most general, the other two are
#' included only for the ease of using more descriptive function names.
#'
#' @aliases cohesion
#' @param graph,x The input graph.
#' @param source The id of the source vertex, for `vertex_connectivity()` it
#' can be `NULL`, see details below.
#' @param target The id of the target vertex, for `vertex_connectivity()` it
#' can be `NULL`, see details below.
#' @param checks Logical constant. Whether to check that the graph is connected
#' and also the degree of the vertices. If the graph is not (strongly)
#' connected then the connectivity is obviously zero. Otherwise if the minimum
#' degree is one then the vertex connectivity is also one. It is a good idea to
#' perform these checks, as they can be done quickly compared to the
#' connectivity calculation itself. They were suggested by Peter McMahan,
#' thanks Peter.
#' @param ... Ignored.
#' @return A scalar real value.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references White, Douglas R and Frank Harary 2001. The Cohesiveness of
#' Blocks In Social Networks: Node Connectivity and Conditional Density.
#' *Sociological Methodology* 31 (1) : 305-359.
#' @family flow
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 1)
#' g <- delete_edges(g, E(g)[100 %--% 1])
#' g2 <- sample_pa(100, m = 5)
#' g2 <- delete_edges(g2, E(g2)[100 %--% 1])
#' vertex_connectivity(g, 100, 1)
#' vertex_connectivity(g2, 100, 1)
#' vertex_disjoint_paths(g2, 100, 1)
#'
#' g <- sample_gnp(50, 5 / 50)
#' g <- as_directed(g)
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' cohesion(g)
#'
vertex_connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_vertex_connectivity, graph, as.logical(checks))
} else if (!is.null(source) && !is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_st_vertex_connectivity, graph, as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1
)
} else {
stop("either give both source and target or neither")
}
}
#' Edge connectivity
#'
#' The edge connectivity of a graph or two vertices, this is recently also
#' called group adhesion.
#'
#' @section `edge_connectivity()` Edge connectivity:
#' The edge connectivity of a pair of vertices (`source` and
#' `target`) is the minimum number of edges needed to remove to eliminate
#' all (directed) paths from `source` to `target`.
#' `edge_connectivity()` calculates this quantity if both the `source`
#' and `target` arguments are given (and not `NULL`).
#'
#' The edge connectivity of a graph is the minimum of the edge connectivity of
#' every (ordered) pair of vertices in the graph. `edge_connectivity()`
#' calculates this quantity if neither the `source` nor the `target`
#' arguments are given (i.e. they are both `NULL`).
#'
#' @section `edge_disjoint_paths()` The maximum number of edge-disjoint paths between two vertices:
#' A set of paths between two vertices is called edge-disjoint if they do not
#' share any edges. The maximum number of edge-disjoint paths are calculated
#' by this function using maximum flow techniques. Directed paths are
#' considered in directed graphs.
#'
#'
#' A set of edge disjoint paths between two vertices is a set of paths between
#' them containing no common edges. The maximum number of edge disjoint paths
#' between two vertices is the same as their edge connectivity.
#'
#' When there are no direct edges between the source and the target, the number
#' of vertex-disjoint paths is the same as the vertex connectivity of
#' the two vertices. When some edges are present, each one of them
#' contributes one extra path.
#'
#' @section `adhesion()` Adhesion of a graph:
#' The adhesion of a graph is the minimum number of edges needed to remove to
#' obtain a graph which is not strongly connected. This is the same as the edge
#' connectivity of the graph.
#'
#' @section All three functions:
#' The three functions documented on this page calculate similar properties,
#' more precisely the most general is `edge_connectivity()`, the others are
#' included only for having more descriptive function names.
#'
#'
#' @param graph The input graph.
#' @param source The id of the source vertex, for `edge_connectivity()` it
#' can be `NULL`, see details below.
#' @param target The id of the target vertex, for `edge_connectivity()` it
#' can be `NULL`, see details below.
#' @param checks Logical constant. Whether to check that the graph is connected
#' and also the degree of the vertices. If the graph is not (strongly)
#' connected then the connectivity is obviously zero. Otherwise if the minimum
#' degree is one then the edge connectivity is also one. It is a good idea to
#' perform these checks, as they can be done quickly compared to the
#' connectivity calculation itself. They were suggested by Peter McMahan,
#' thanks Peter.
#' @return A scalar real value.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Douglas R. White and Frank Harary (2001): The cohesiveness of blocks in
#' social networks: node connectivity and conditional density,
#' Sociological Methodology, vol. 31, 2001, pp. 305–59.
#' @family flow
#' @export
#' @keywords graphs
#' @examples
#'
#' g <- sample_pa(100, m = 1)
#' g2 <- sample_pa(100, m = 5)
#' edge_connectivity(g, 100, 1)
#' edge_connectivity(g2, 100, 1)
#' edge_disjoint_paths(g2, 100, 1)
#'
#' g <- sample_gnp(50, 5 / 50)
#' g <- as_directed(g)
#' g <- induced_subgraph(g, subcomponent(g, 1))
#' adhesion(g)
#'
edge_connectivity <- function(graph, source = NULL, target = NULL, checks = TRUE) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
if (is.null(source) && is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_edge_connectivity, graph, as.logical(checks))
} else if (!is.null(source) && !is.null(target)) {
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_st_edge_connectivity, graph,
as_igraph_vs(graph, source) - 1, as_igraph_vs(graph, target) - 1
)
} else {
stop("either give both source and target or neither")
}
}
#' @rdname edge_connectivity
#' @export
edge_disjoint_paths <- function(graph, source, target) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_edge_disjoint_paths, graph,
as_igraph_vs(graph, source) - 1, as_igraph_vs(graph, target) - 1
)
}
#' @rdname vertex_connectivity
#' @export
vertex_disjoint_paths <- function(graph, source = NULL, target = NULL) {
ensure_igraph(graph)
if (length(source) == 0) {
source <- NULL
}
if (length(target) == 0) {
target <- NULL
}
on.exit(.Call(R_igraph_finalizer))
.Call(
R_igraph_vertex_disjoint_paths, graph, as_igraph_vs(graph, source) - 1,
as_igraph_vs(graph, target) - 1
)
}
#' @rdname edge_connectivity
#' @export
adhesion <- function(graph, checks = TRUE) {
ensure_igraph(graph)
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_adhesion, graph, as.logical(checks))
}
#' @rdname vertex_connectivity
#' @method cohesion igraph
#' @export
cohesion.igraph <- function(x, checks = TRUE, ...) {
ensure_igraph(x)
on.exit(.Call(R_igraph_finalizer))
.Call(R_igraph_cohesion, x, as.logical(checks))
}
#' List all (s,t)-cuts of a graph
#'
#' List all (s,t)-cuts in a directed graph.
#'
#' Given a \eqn{G} directed graph and two, different and non-ajacent vertices,
#' \eqn{s} and \eqn{t}, an \eqn{(s,t)}-cut is a set of edges, such that after
#' removing these edges from \eqn{G} there is no directed path from \eqn{s} to
#' \eqn{t}.
#'
#' @param graph The input graph. It must be directed.
#' @param source The source vertex.
#' @param target The target vertex.
#' @return A list with entries: \item{cuts}{A list of numeric vectors
#' containing edge ids. Each vector is an \eqn{(s,t)}-cut.}
#' \item{partition1s}{A list of numeric vectors containing vertex ids, they
#' correspond to the edge cuts. Each vertex set is a generator of the
#' corresponding cut, i.e. in the graph \eqn{G=(V,E)}, the vertex set \eqn{X}
#' and its complementer \eqn{V-X}, generates the cut that contains exactly the
#' edges that go from \eqn{X} to \eqn{V-X}.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in
#' graphs, *Algorithmica* 15, 351--372, 1996.
#' @keywords graphs
#' @examples
#'
#' # A very simple graph
#' g <- graph_from_literal(a -+ b -+ c -+ d -+ e)
#' st_cuts(g, source = "a", target = "e")
#'
#' # A somewhat more difficult graph
#' g2 <- graph_from_literal(
#' s --+ a:b, a:b --+ t,
#' a --+ 1:2:3, 1:2:3 --+ b
#' )
#' st_cuts(g2, source = "s", target = "t")
#' @family flow
#' @export
#' @cdocs igraph_all_st_cuts
st_cuts <- all_st_cuts_impl
#' List all minimum \eqn{(s,t)}-cuts of a graph
#'
#' Listing all minimum \eqn{(s,t)}-cuts of a directed graph, for given \eqn{s}
#' and \eqn{t}.
#'
#' Given a \eqn{G} directed graph and two, different and non-ajacent vertices,
#' \eqn{s} and \eqn{t}, an \eqn{(s,t)}-cut is a set of edges, such that after
#' removing these edges from \eqn{G} there is no directed path from \eqn{s} to
#' \eqn{t}.
#'
#' The size of an \eqn{(s,t)}-cut is defined as the sum of the capacities (or
#' weights) in the cut. For unweighted (=equally weighted) graphs, this is
#' simply the number of edges.
#'
#' An \eqn{(s,t)}-cut is minimum if it is of the smallest possible size.
#'
#' @param graph The input graph. It must be directed.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex.
#' @param capacity Numeric vector giving the edge capacities. If this is
#' `NULL` and the graph has a `weight` edge attribute, then this
#' attribute defines the edge capacities. For forcing unit edge capacities,
#' even for graphs that have a `weight` edge attribute, supply `NA`
#' here.
#' @return A list with entries: \item{value}{Numeric scalar, the size of the
#' minimum cut(s).} \item{cuts}{A list of numeric vectors containing edge ids.
#' Each vector is a minimum \eqn{(s,t)}-cut.} \item{partition1s}{A list of
#' numeric vectors containing vertex ids, they correspond to the edge cuts.
#' Each vertex set is a generator of the corresponding cut, i.e. in the graph
#' \eqn{G=(V,E)}, the vertex set \eqn{X} and its complementer \eqn{V-X},
#' generates the cut that contains exactly the edges that go from \eqn{X} to
#' \eqn{V-X}.}
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in
#' graphs, *Algorithmica* 15, 351--372, 1996.
#' @keywords graphs
#' @examples
#'
#' # A difficult graph, from the Provan-Shier paper
#' g <- graph_from_literal(
#' s --+ a:b, a:b --+ t,
#' a --+ 1:2:3:4:5, 1:2:3:4:5 --+ b
#' )
#' st_min_cuts(g, source = "s", target = "t")
#' @family flow
#' @export
#' @cdocs igraph_all_st_mincuts
st_min_cuts <- all_st_mincuts_impl
#' Dominator tree
#'
#' Dominator tree of a directed graph.
#'
#' A flowgraph is a directed graph with a distinguished start (or root) vertex
#' \eqn{r}, such that for any vertex \eqn{v}, there is a path from \eqn{r} to
#' \eqn{v}. A vertex \eqn{v} dominates another vertex \eqn{w} (not equal to
#' \eqn{v}), if every path from \eqn{r} to \eqn{w} contains \eqn{v}. Vertex
#' \eqn{v} is the immediate dominator or \eqn{w},
#' \eqn{v=\textrm{idom}(w)}{v=idom(w)}, if \eqn{v} dominates \eqn{w} and every
#' other dominator of \eqn{w} dominates \eqn{v}. The edges
#' \eqn{{(\textrm{idom}(w), w)| w \ne r}}{{(idom(w),w)| w is not r}} form a
#' directed tree, rooted at \eqn{r}, called the dominator tree of the graph.
#' Vertex \eqn{v} dominates vertex \eqn{w} if and only if \eqn{v} is an
#' ancestor of \eqn{w} in the dominator tree.
#'
#' This function implements the Lengauer-Tarjan algorithm to construct the
#' dominator tree of a directed graph. For details see the reference below.
#'
#' @param graph A directed graph. If it is not a flowgraph, and it contains
#' some vertices not reachable from the root vertex, then these vertices will
#' be collected and returned as part of the result.
#' @param root The id of the root (or source) vertex, this will be the root of
#' the tree.
#' @param mode Constant, must be \sQuote{`in`} or \sQuote{`out`}. If
#' it is \sQuote{`in`}, then all directions are considered as opposite to
#' the original one in the input graph.
#' @return A list with components: \item{dom}{ A numeric vector giving the
#' immediate dominators for each vertex. For vertices that are unreachable from
#' the root, it contains `NaN`. For the root vertex itself it contains
#' minus one. } \item{domtree}{ A graph object, the dominator tree. Its vertex
#' ids are the as the vertex ids of the input graph. Isolate vertices are the
#' ones that are unreachable from the root. } \item{leftout}{ A numeric vector
#' containing the vertex ids that are unreachable from the root. }
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Thomas Lengauer, Robert Endre Tarjan: A fast algorithm for
#' finding dominators in a flowgraph, *ACM Transactions on Programming
#' Languages and Systems (TOPLAS)* I/1, 121--141, 1979.
#' @keywords graphs
#' @examples
#'
#' ## The example from the paper
#' g <- graph_from_literal(
#' R -+ A:B:C, A -+ D, B -+ A:D:E, C -+ F:G, D -+ L,
#' E -+ H, F -+ I, G -+ I:J, H -+ E:K, I -+ K, J -+ I,
#' K -+ I:R, L -+ H
#' )
#' dtree <- dominator_tree(g, root = "R")
#' layout <- layout_as_tree(dtree$domtree, root = "R")
#' layout[, 2] <- -layout[, 2]
#' plot(dtree$domtree, layout = layout, vertex.label = V(dtree$domtree)$name)
#' @family flow
#' @export
dominator_tree <- function(graph, root, mode = c("out", "in", "all", "total")) {
# Argument checks
ensure_igraph(graph)
root <- as_igraph_vs(graph, root)
if (length(root) == 0) {
stop("No vertex was specified")
}
mode <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_dominator_tree, graph, root - 1, mode)
if (igraph_opt("return.vs.es")) {
res$leftout <- create_vs(graph, res$leftout)
}
# Replace 0 with -1 in `res$dom' to conform with documentation
res$dom[res$dom == 0] <- -1
res
}
#' Minimum size vertex separators
#'
#' List all vertex sets that are minimal \eqn{(s,t)} separators for some
#' \eqn{s} and \eqn{t}, in an undirected graph.
#'
#' A \eqn{(s,t)} vertex separator is a set of vertices, such that after their
#' removal from the graph, there is no path between \eqn{s} and \eqn{t} in the
#' graph.
#'
#' A \eqn{(s,t)} vertex separator is minimal if none of its proper subsets is
#' an \eqn{(s,t)} vertex separator for the same \eqn{s} and \eqn{t}.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @return A list of numeric vectors. Each vector contains a vertex set
#' (defined by vertex ids), each vector is an (s,t) separator of the input
#' graph, for some \eqn{s} and \eqn{t}.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Anne Berry, Jean-Paul Bordat and Olivier Cogis: Generating All
#' the Minimal Separators of a Graph, In: Peter Widmayer, Gabriele Neyer and
#' Stephan Eidenbenz (editors): *Graph-theoretic concepts in computer
#' science*, 1665, 167--172, 1999. Springer.
#' @keywords graphs
#' @export
#' @examples
#'
#' ring <- make_ring(4)
#' min_st_separators(ring)
#'
#' chvatal <- make_graph("chvatal")
#' min_st_separators(chvatal)
#' # https://github.com/r-lib/roxygen2/issues/1092
#' @section Note:
#' Note that the code below returns `{1, 3}` despite its subset `{1}` being a
#' separator as well. This is because `{1, 3}` is minimal with respect to
#' separating vertices 2 and 4.
#'
#' ```{r, eval=FALSE}
#' g <- make_graph(~ 0-1-2-3-4-1)
#' min_st_separators(g)
#' ```
#'
#' ```{r, echo=FALSE}
#' local_igraph_options(print.id = FALSE)
#' g <- make_graph(~ 0-1-2-3-4-1)
#' min_st_separators(g)
#' ```
#' @family flow
#' @cdocs igraph_all_minimal_st_separators
min_st_separators <- all_minimal_st_separators_impl
#' Maximum flow in a graph
#'
#' In a graph where each edge has a given flow capacity the maximal flow
#' between two vertices is calculated.
#'
#' `max_flow()` calculates the maximum flow between two vertices in a
#' weighted (i.e. valued) graph. A flow from `source` to `target` is
#' an assignment of non-negative real numbers to the edges of the graph,
#' satisfying two properties: (1) for each edge the flow (i.e. the assigned
#' number) is not more than the capacity of the edge (the `capacity`
#' parameter or edge attribute), (2) for every vertex, except the source and
#' the target the incoming flow is the same as the outgoing flow. The value of
#' the flow is the incoming flow of the `target` vertex. The maximum flow
#' is the flow of maximum value.
#'
#' @param graph The input graph.
#' @param source The id of the source vertex.
#' @param target The id of the target vertex (sometimes also called sink).
#' @param capacity Vector giving the capacity of the edges. If this is
#' `NULL` (the default) then the `capacity` edge attribute is used.
#' Note that the `weight` edge attribute is not used by this function.
#' @return A named list with components:
#' \item{value}{A numeric scalar, the value of the maximum flow.}
#' \item{flow}{A numeric vector, the flow itself, one entry for each
#' edge. For undirected graphs this entry is bit trickier, since for
#' these the flow direction is not predetermined by the edge
#' direction. For these graphs the elements of the this vector can be
#' negative, this means that the flow goes from the bigger vertex id to
#' the smaller one. Positive values mean that the flow goes from
#' the smaller vertex id to the bigger one.}
#' \item{cut}{A numeric vector of edge ids, the minimum cut corresponding
#' to the maximum flow.}
#' \item{partition1}{A numeric vector of vertex ids, the vertices in the
#' first partition of the minimum cut corresponding to the maximum
#' flow.}
#' \item{partition2}{A numeric vector of vertex ids, the vertices in the
#' second partition of the minimum cut corresponding to the maximum
#' flow.}
#' \item{stats}{A list with some statistics from the push-relabel
#' algorithm. Five integer values currently: `nopush` is the
#' number of push operations, `norelabel` the number of
#' relabelings, `nogap` is the number of times the gap heuristics
#' was used, `nogapnodes` is the total number of gap nodes omitted
#' because of the gap heuristics and `nobfs` is the number of
#' times a global breadth-first-search update was performed to assign
#' better height (=distance) values to the vertices.}
#' @references A. V. Goldberg and R. E. Tarjan: A New Approach to the Maximum
#' Flow Problem *Journal of the ACM* 35:921-940, 1988.
#' @examples
#'
#' E <- rbind(c(1, 3, 3), c(3, 4, 1), c(4, 2, 2), c(1, 5, 1), c(5, 6, 2), c(6, 2, 10))
#' colnames(E) <- c("from", "to", "capacity")
#' g1 <- graph_from_data_frame(as.data.frame(E))
#' max_flow(g1, source = V(g1)["1"], target = V(g1)["2"])
#' @family flow
#' @export
#' @cdocs igraph_maxflow
max_flow <- maxflow_impl
#' Check whether removing this set of vertices would disconnect the graph.
#'
#' `is_separator()` determines whether the supplied vertex set is a vertex
#' separator:
#' A vertex set \eqn{S} is a separator if there are vertices \eqn{u} and \eqn{v}
#' in the graph such that all paths between \eqn{u} and \eqn{v} pass
#' through some vertices in \eqn{S}.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @param candidate A numeric vector giving the vertex ids of the candidate
#' separator.
#' @return A logical scalar, whether the supplied vertex set is a (minimal)
#' vertex separator or not.
#' lists all vertex separator of minimum size.
#' @family flow
#' @examples
#' ring <- make_ring(4)
#' min_st_separators(ring)
#' is_separator(ring, 1)
#' is_separator(ring, c(1, 3))
#' is_separator(ring, c(2, 4))
#' is_separator(ring, c(2, 3))
#'
#' @export
#' @cdocs igraph_is_separator
is_separator <- is_separator_impl
#' Minimal vertex separators
#'
#' Check whether a given set of vertices is a minimal vertex separator.
#'
#' `is_min_separator()` decides whether the supplied vertex set is a minimal
#' vertex separator. A minimal vertex separator is a vertex separator, such
#' that none of its proper subsets are a vertex separator.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @param candidate A numeric vector giving the vertex ids of the candidate
#' separator.
#' @return A logical scalar, whether the supplied vertex set is a (minimal)
#' vertex separator or not.
#' @examples
#' # The graph from the Moody-White paper
#' mw <- graph_from_literal(
#' 1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
#' 5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
#' 10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
#' 17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
#' 21 - 22:23, 22 - 23
#' )
#'
#' # Cohesive subgraphs
#' mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
#' mw2 <- induced_subgraph(mw, as.character(7:16))
#' mw3 <- induced_subgraph(mw, as.character(17:23))
#' mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
#' mw5 <- induced_subgraph(mw, as.character(1:7))
#'
#' check.sep <- function(G) {
#' sep <- min_separators(G)
#' sapply(sep, is_min_separator, graph = G)
#' }
#'
#' check.sep(mw)
#' check.sep(mw1)
#' check.sep(mw2)
#' check.sep(mw3)
#' check.sep(mw4)
#' check.sep(mw5)
#'
#' @family flow
#' @export
#' @cdocs igraph_is_minimal_separator
is_min_separator <- is_minimal_separator_impl
#' Minimum size vertex separators
#'
#' Find all vertex sets of minimal size whose removal separates the graph into
#' more components
#'
#' This function implements the Kanevsky algorithm for finding all minimal-size
#' vertex separators in an undirected graph. See the reference below for the
#' details.
#'
#' In the special case of a fully connected input graph with \eqn{n} vertices,
#' all subsets of size \eqn{n-1} are listed as the result.
#'
#' @param graph The input graph. It may be directed, but edge directions are
#' ignored.
#' @return A list of numeric vectors. Each numeric vector is a vertex
#' separator.
#' @references Arkady Kanevsky: Finding all minimum-size separating vertex sets
#' in a graph. *Networks* 23 533--541, 1993.
#'
#' JS Provan and DR Shier: A Paradigm for listing (s,t)-cuts in graphs,
#' *Algorithmica* 15, 351--372, 1996.
#'
#' J. Moody and D. R. White. Structural cohesion and embeddedness: A
#' hierarchical concept of social groups. *American Sociological Review*,
#' 68 103--127, Feb 2003.
#' @family flow
#' @export
#' @examples
#' # The graph from the Moody-White paper
#' mw <- graph_from_literal(
#' 1 - 2:3:4:5:6, 2 - 3:4:5:7, 3 - 4:6:7, 4 - 5:6:7,
#' 5 - 6:7:21, 6 - 7, 7 - 8:11:14:19, 8 - 9:11:14, 9 - 10,
#' 10 - 12:13, 11 - 12:14, 12 - 16, 13 - 16, 14 - 15, 15 - 16,
#' 17 - 18:19:20, 18 - 20:21, 19 - 20:22:23, 20 - 21,
#' 21 - 22:23, 22 - 23
#' )
#'
#' # Cohesive subgraphs
#' mw1 <- induced_subgraph(mw, as.character(c(1:7, 17:23)))
#' mw2 <- induced_subgraph(mw, as.character(7:16))
#' mw3 <- induced_subgraph(mw, as.character(17:23))
#' mw4 <- induced_subgraph(mw, as.character(c(7, 8, 11, 14)))
#' mw5 <- induced_subgraph(mw, as.character(1:7))
#'
#' min_separators(mw)
#' min_separators(mw1)
#' min_separators(mw2)
#' min_separators(mw3)
#' min_separators(mw4)
#' min_separators(mw5)
#'
#' # Another example, the science camp network
#' camp <- graph_from_literal(
#' Harry:Steve:Don:Bert - Harry:Steve:Don:Bert,
#' Pam:Brazey:Carol:Pat - Pam:Brazey:Carol:Pat,
#' Holly - Carol:Pat:Pam:Jennie:Bill,
#' Bill - Pauline:Michael:Lee:Holly,
#' Pauline - Bill:Jennie:Ann,
#' Jennie - Holly:Michael:Lee:Ann:Pauline,
#' Michael - Bill:Jennie:Ann:Lee:John,
#' Ann - Michael:Jennie:Pauline,
#' Lee - Michael:Bill:Jennie,
#' Gery - Pat:Steve:Russ:John,
#' Russ - Steve:Bert:Gery:John,
#' John - Gery:Russ:Michael
#' )
#' min_separators(camp)
#' @cdocs igraph_minimum_size_separators
min_separators <- minimum_size_separators_impl
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.