Nothing
#' Graphlet decomposition of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graphlets.project()` was renamed to `graphlet_proj()` to create a more
#' consistent API.
#' @inheritParams graphlet_proj
#' @keywords internal
#' @export
graphlets.project <- function(graph, weights = NULL, cliques, niter = 1000, Mu = rep(1, length(cliques))) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graphlets.project()", "graphlet_proj()")
graphlet_proj(graph = graph, weights = weights, cliques = cliques, niter = niter, Mu = Mu)
} # nocov end
#' Graphlet decomposition of a graph
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `graphlets.candidate.basis()` was renamed to `graphlet_basis()` to create a more
#' consistent API.
#' @inheritParams graphlet_basis
#' @keywords internal
#' @export
graphlets.candidate.basis <- function(graph, weights = NULL) { # nocov start
lifecycle::deprecate_soft("2.0.0", "graphlets.candidate.basis()", "graphlet_basis()")
graphlet_basis(graph = graph, weights = weights)
} # nocov end
#' Graphlet decomposition of a graph
#'
#' Graphlet decomposition models a weighted undirected graph via the union of
#' potentially overlapping dense social groups. This is done by a two-step
#' algorithm. In the first step a candidate set of groups (a candidate basis)
#' is created by finding cliques if the thresholded input graph. In the second
#' step these the graph is projected on the candidate basis, resulting a weight
#' coefficient for each clique in the candidate basis.
#'
#' igraph contains three functions for performing the graph decomponsition of a
#' graph. The first is `graphlets()`, which performed both steps on the
#' method and returns a list of subgraphs, with their corresponding weights.
#' The second and third functions correspond to the first and second steps of
#' the algorithm, and they are useful if the user wishes to perform them
#' individually: `graphlet_basis()` and `graphlet_proj()`.
#'
#' @param graph The input graph, edge directions are ignored. Only simple graph
#' (i.e. graphs without self-loops and multiple edges) are supported.
#' @param weights Edge weights. If the graph has a `weight` edge attribute
#' and this argument is `NULL` (the default), then the `weight` edge
#' attribute is used.
#' @param niter Integer scalar, the number of iterations to perform.
#' @param cliques A list of vertex ids, the graphlet basis to use for the
#' projection.
#' @param Mu Starting weights for the projection.
#' @return `graphlets()` returns a list with two members: \item{cliques}{A
#' list of subgraphs, the candidate graphlet basis. Each subgraph is give by a
#' vector of vertex ids.} \item{Mu}{The weights of the subgraphs in graphlet
#' basis.}
#'
#' `graphlet_basis()` returns a list of two elements: \item{cliques}{A list
#' of subgraphs, the candidate graphlet basis. Each subgraph is give by a
#' vector of vertex ids.} \item{thresholds}{The weight thresholds used for
#' finding the subgraphs.}
#'
#' `graphlet_proj()` return a numeric vector, the weights of the graphlet
#' basis subgraphs.
#' @examples
#'
#' ## Create an example graph first
#' D1 <- matrix(0, 5, 5)
#' D2 <- matrix(0, 5, 5)
#' D3 <- matrix(0, 5, 5)
#' D1[1:3, 1:3] <- 2
#' D2[3:5, 3:5] <- 3
#' D3[2:5, 2:5] <- 1
#'
#' g <- simplify(graph_from_adjacency_matrix(D1 + D2 + D3,
#' mode = "undirected", weighted = TRUE
#' ))
#' V(g)$color <- "white"
#' E(g)$label <- E(g)$weight
#' E(g)$label.cex <- 2
#' E(g)$color <- "black"
#' layout(matrix(1:6, nrow = 2, byrow = TRUE))
#' co <- layout_with_kk(g)
#' par(mar = c(1, 1, 1, 1))
#' plot(g, layout = co)
#'
#' ## Calculate graphlets
#' gl <- graphlets(g, niter = 1000)
#'
#' ## Plot graphlets
#' for (i in 1:length(gl$cliques)) {
#' sel <- gl$cliques[[i]]
#' V(g)$color <- "white"
#' V(g)[sel]$color <- "#E495A5"
#' E(g)$width <- 1
#' E(g)[V(g)[sel] %--% V(g)[sel]]$width <- 2
#' E(g)$label <- ""
#' E(g)[width == 2]$label <- round(gl$Mu[i], 2)
#' E(g)$color <- "black"
#' E(g)[width == 2]$color <- "#E495A5"
#' plot(g, layout = co)
#' }
#' @family glet
#' @export
graphlet_basis <- function(graph, weights = NULL) {
## Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
on.exit(.Call(R_igraph_finalizer))
## Function call
res <- .Call(R_igraph_graphlets_candidate_basis, graph, weights)
res
}
#' @rdname graphlet_basis
#' @export
graphlet_proj <- function(graph, weights = NULL, cliques, niter = 1000,
Mu = rep(1, length(cliques))) {
# Argument checks
ensure_igraph(graph)
if (is.null(weights) && "weight" %in% edge_attr_names(graph)) {
weights <- E(graph)$weight
}
if (!is.null(weights) && any(!is.na(weights))) {
weights <- as.numeric(weights)
} else {
weights <- NULL
}
Mu <- as.numeric(Mu)
niter <- as.numeric(niter)
on.exit(.Call(R_igraph_finalizer))
# Function call
res <- .Call(R_igraph_graphlets_project, graph, weights, cliques, Mu, niter)
res
}
#################
## Example code
function() {
library(igraph)
fitandplot <- function(g, gl) {
g <- simplify(g)
V(g)$color <- "white"
E(g)$label <- E(g)$weight
E(g)$label.cex <- 2
E(g)$color <- "black"
plot.new()
layout(matrix(1:6, nrow = 2, byrow = TRUE))
co <- layout_with_kk(g)
par(mar = c(1, 1, 1, 1))
plot(g, layout = co)
for (i in 1:length(gl$Bc)) {
sel <- gl$Bc[[i]]
V(g)$color <- "white"
V(g)[sel]$color <- "#E495A5"
E(g)$width <- 1
E(g)[V(g)[sel] %--% V(g)[sel]]$width <- 2
E(g)$label <- ""
E(g)[width == 2]$label <- round(gl$Muc[i], 2)
E(g)$color <- "black"
E(g)[width == 2]$color <- "#E495A5"
plot(g, layout = co)
}
}
D1 <- matrix(0, 5, 5)
D2 <- matrix(0, 5, 5)
D3 <- matrix(0, 5, 5)
D1[1:3, 1:3] <- 2
D2[3:5, 3:5] <- 3
D3[2:5, 2:5] <- 1
g <- graph_from_adjacency_matrix(D1 + D2 + D3, mode = "undirected", weighted = TRUE)
gl <- graphlets(g, iter = 1000)
fitandplot(g, gl)
## Project another graph on the graphlets
set.seed(42)
g2 <- set_edge_attr(g, "weight", value = sample(E(g)$weight))
gl2 <- graphlet_proj(g2, gl$Bc, 1000)
fitandplot(g2, gl2)
}
#' @rdname graphlet_basis
#' @export
#' @cdocs igraph_graphlets
graphlets <- graphlets_impl
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.