R/other.R

Defines functions igraph.i.spMatrix handle_vertex_type_arg sample_seq running_mean convex.hull igraph.sample running.mean

Documented in convex.hull igraph.sample running_mean running.mean sample_seq

#' Running mean of a time series
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `running.mean()` was renamed to `running_mean()` to create a more
#' consistent API.
#' @inheritParams running_mean
#' @keywords internal
#' @export
running.mean <- function(v, binwidth) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "running.mean()", "running_mean()")
  running_mean(v = v, binwidth = binwidth)
} # nocov end

#' Sampling a random integer sequence
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `igraph.sample()` was renamed to `sample_seq()` to create a more
#' consistent API.
#' @inheritParams sample_seq
#' @keywords internal
#' @export
igraph.sample <- function(low, high, length) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "igraph.sample()", "sample_seq()")
  sample_seq(low = low, high = high, length = length)
} # nocov end

#' Convex hull of a set of vertices
#'
#' @description
#' `r lifecycle::badge("deprecated")`
#'
#' `convex.hull()` was renamed to `convex_hull()` to create a more
#' consistent API.
#' @inheritParams convex_hull
#' @keywords internal
#' @export
convex.hull <- function(data) { # nocov start
  lifecycle::deprecate_soft("2.0.0", "convex.hull()", "convex_hull()")
  convex_hull(data = data)
} # nocov end
#   IGraph R package
#   Copyright (C) 2005-2012  Gabor Csardi <csardi.gabor@gmail.com>
#   334 Harvard street, Cambridge, MA 02139 USA
#
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, write to the Free Software
#   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
#   02110-1301 USA
#
###################################################################



#' Running mean of a time series
#'
#' `running_mean()` calculates the running mean in a vector with the given
#' bin width.
#'
#' The running mean of `v` is a `w` vector of length
#' `length(v)-binwidth+1`. The first element of `w` id the average of
#' the first `binwidth` elements of `v`, the second element of
#' `w` is the average of elements `2:(binwidth+1)`, etc.
#'
#' @param v The numeric vector.
#' @param binwidth Numeric constant, the size of the bin, should be meaningful,
#'   i.e. smaller than the length of `v`.
#' @return A numeric vector of length `length(v)-binwidth+1`
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @family other
#' @export
#' @keywords manip
#' @examples
#'
#' running_mean(1:100, 10)
#'
running_mean <- function(v, binwidth) {
  v <- as.numeric(v)
  binwidth <- as.numeric(binwidth)
  if (length(v) < binwidth) {
    stop("Vector too short for this binwidth.")
  }

  on.exit(.Call(R_igraph_finalizer))
  .Call(R_igraph_running_mean, v, binwidth)
}



#' Sampling a random integer sequence
#'
#' This function provides a very efficient way to pull an integer random sample
#' sequence from an integer interval.
#'
#' The algorithm runs in `O(length)` expected time, even if
#' `high-low` is big. It is much faster (but of course less general) than
#' the builtin `sample` function of R.
#'
#' @param low The lower limit of the interval (inclusive).
#' @param high The higher limit of the interval (inclusive).
#' @param length The length of the sample.
#' @return An increasing numeric vector containing integers, the sample.
#' @author Gabor Csardi \email{csardi.gabor@@gmail.com}
#' @references Jeffrey Scott Vitter: An Efficient Algorithm for Sequential
#' Random Sampling, *ACM Transactions on Mathematical Software*, 13/1,
#' 58--67.
#' @family other
#' @export
#' @keywords datagen
#' @examples
#'
#' rs <- sample_seq(1, 100000000, 10)
#' rs
#'
sample_seq <- function(low, high, length) {
  if (length > high - low + 1) {
    stop("length too big for this interval")
  }

  on.exit(.Call(R_igraph_finalizer))
  .Call(
    R_igraph_random_sample, as.numeric(low), as.numeric(high),
    as.numeric(length)
  )
}

#' Common handler for vertex type arguments in igraph functions
#'
#' This function takes the `types` and `graph` arguments from a
#' public igraph function call and validates the vertex type vector.
#'
#' When the provided vertex types are NULL and the graph has a `types`
#' vertex attribute, then the value of this vertex attribute will be used as
#' vertex types. Non-logical vertex type vectors are coerced into logical
#' vectors after printing a warning.
#'
#' @param types the vertex types
#' @param graph the graph
#' @param required whether the graph has to be bipartite
#' @return A logical vector representing the resolved vertex type for each
#'   vertex in the graph
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @dev
#'
handle_vertex_type_arg <- function(types, graph, required = T) {
  if (is.null(types) && "type" %in% vertex_attr_names(graph)) {
    types <- V(graph)$type
  }
  if (!is.null(types)) {
    if (!is.logical(types)) {
      cli::cli_warn("vertex types converted to logical.")
    }
    types <- as.logical(types)
    if (any(is.na(types))) {
      stop("`NA' is not allowed in vertex types")
    }
  }
  if (is.null(types) && required) {
    stop("Not a bipartite graph, supply `types' argument or add a vertex attribute named `type'")
  }
  return(types)
}

igraph.i.spMatrix <- function(M) {
  if (M$type == "triplet") {
    Matrix::sparseMatrix(dims = M$dim, i = M$i + 1L, j = M$p + 1L, x = M$x)
  } else {
    new("dgCMatrix",
      Dim = M$dim, Dimnames = list(NULL, NULL),
      factors = list(), i = M$i, p = M$p, x = M$x
    )
  }
}

#' Convex hull of a set of vertices
#'
#' Calculate the convex hull of a set of points, i.e. the covering polygon that
#' has the smallest area.
#'
#'
#' @param data The data points, a numeric matrix with two columns.
#' @return A named list with components: \item{resverts}{The indices of the
#'   input vertices that constritute the convex hull.} \item{rescoords}{The
#'   coordinates of the corners of the convex hull.}
#' @author Tamas Nepusz \email{ntamas@@gmail.com}
#' @references Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
#' Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and
#' McGraw-Hill, 2001. ISBN 0262032937. Pages 949-955 of section 33.3: Finding
#' the convex hull.
#' @keywords graphs
#' @examples
#'
#' M <- cbind(runif(100), runif(100))
#' convex_hull(M)
#' @family other
#' @export
#' @cdocs igraph_convex_hull
convex_hull <- convex_hull_impl

Try the igraph package in your browser

Any scripts or data that you put into this service are public.

igraph documentation built on Oct. 20, 2024, 1:06 a.m.