Nothing
# Other models ----------------------------------------------------------
# =======================================================================
#' @export
get_predicted.crr <- function(x, verbose = TRUE, ...) {
out <- as.data.frame(unclass(stats::predict(x, ...)))
class(out) <- c("get_predicted", class(out))
out
}
#' @export
get_predicted.sdmTMB <- function(x,
data = NULL,
predict = "response",
ci = NULL,
verbose = TRUE,
...) {
# evaluate arguments
my_args <- .get_predicted_args(x, data = data, predict = predict, ci = ci, verbose = verbose, ...)
# evaluate dots, remove some arguments that might be duplicated else
dot_args <- list(...)
dot_args[["newdata"]] <- NULL
dot_args[["type"]] <- NULL
# 1. step: predictions
predictions <- stats::predict(
x,
newdata = as.data.frame(my_args$data),
se_fit = !is.null(my_args$ci),
re_form = NA, # i.e., spatial/spatiotemporal random fields off
re_form_iid = NA,
...
)
# copy standard errors and predictions
se <- as.vector(predictions$est_se)
predictions <- as.vector(predictions$est)
# 2. step: confidence intervals
ci_data <- .safe({
get_predicted_ci(
x,
predictions,
data = my_args$data,
ci = my_args$ci,
se = se,
...
)
})
# 3. step: back-transform
if (is.null(predictions)) {
out <- NULL
} else {
out <- .get_predicted_transform(x, predictions, my_args = my_args, ci_data, verbose = verbose, ...)
}
# 4. step: final preparation
if (!is.null(out)) {
out <- .get_predicted_out(out$predictions, my_args = my_args, ci_data = out$ci_data)
}
out
}
# FA / PCA -------------------------------------------------------------
# ======================================================================
#' @rdname get_predicted
#' @export
get_predicted.principal <- function(x, data = NULL, ...) {
if (is.null(data)) {
out <- as.data.frame(x$scores)
} else {
out <- as.data.frame(stats::predict(x, data, ...))
}
class(out) <- c("get_predicted", class(out))
out
}
#' @export
get_predicted.fa <- get_predicted.principal
#' @export
get_predicted.prcomp <- function(x, data = NULL, ...) {
if (is.null(data)) {
out <- as.data.frame(x$x)
} else {
out <- as.data.frame(stats::predict(x, data, ...))
}
class(out) <- c("get_predicted", class(out))
out
}
#' @export
get_predicted.faMain <- function(x, data = NULL, ...) {
check_if_installed("fungible")
if (is.null(data)) {
format_error(
"A dataframe (either the original of a new one) must be provided (`get_predicted(fa_results, data = df`)."
)
} else {
out <- as.data.frame(fungible::faScores(X = data, faMainObject = x)$fscores)
}
class(out) <- c("get_predicted", class(out))
out
}
#' @export
get_predicted.glmgee <- function(x,
data = NULL,
predict = "expectation",
ci = NULL,
vcov = NULL,
verbose = TRUE,
...) {
# sanitize argument
if (is.null(vcov)) {
vcov <- "robust"
}
vcov <- validate_argument(vcov, c("robust", "df-adjusted", "model", "bias-corrected"))
# setup predict function
predict_function <- function(x, data, ...) {
as.data.frame(stats::predict(
x,
newdata = data,
se.fit = TRUE,
type = "link",
varest = vcov,
...
))
}
my_args <- .get_predicted_args(x, data = data, predict = predict, verbose = verbose, ...)
# 1. step: predictions
predictions <- predict_function(x, data = my_args$data)
se <- predictions$se.fit
predictions <- predictions$fit
# 2. step: confidence intervals
ci_data <- get_predicted_ci(
x,
predictions,
data = my_args$data,
se = se,
ci = ci,
ci_type = my_args$ci_type,
verbose = verbose,
...
)
# 3. step: back-transform
out <- .get_predicted_transform(x, predictions, my_args, ci_data, verbose = verbose, ...)
# 4. step: final preparation
.get_predicted_out(out$predictions, my_args = my_args, ci_data = out$ci_data)
}
# htest -------------------------------------------------------------
# ======================================================================
#' @export
get_predicted.htest <- function(x, ...) {
info <- model_info(x)
if (info$is_chi2test) {
return(x$expected)
}
NULL
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.