Description Usage Arguments Value Author(s) References Examples
Function to implement Johnson's (2000) relative weight computation.
1 | relWt(r_mat, y_col, x_col)
|
r_mat |
A correlation matrix. |
y_col |
A vector of columns representing criterion variables. |
x_col |
A vector of columns representing predictor variables. |
A list containing the objects eps, beta_star, and lambda_star. The object eps contains the vector of relative weights of the predictors whose sum is equivalent to the model R^2 (see Johnson, 2000, ps 8 - 9). The object beta_star contains the regression weights from regressing the criterion on Z, the 'best fitting orthogonal approximation' of the predictor variables (see Johnson, 2000, p. 5). The object lambda_star contains the regression coefficients from regressing Z on the predictor variables (see Jonhson, 2000, p. 8).
Jeff Jones and Allen Goebl
Johnson, J. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35, 1–19.
1 2 3 4 5 6 7 8 9 |
$eps
EPS
1 0.24066119
2 0.05492664
3 0.12143476
4 0.28158189
$beta_star
[1] -0.4924924 0.2204546 -0.3504168 0.5335388
$lambda_star
[,1] [,2] [,3] [,4]
[1,] 0.9670433 0.0823975 0.13647693 0.19852422
[2,] 0.0823975 0.9632848 0.25351748 0.03196840
[3,] 0.1364769 0.2535175 0.95383919 0.08540336
[4,] 0.1985242 0.0319684 0.08540336 0.97584446
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.