ppi_ols | R Documentation |
Helper function for prediction-powered inference for OLS estimation
ppi_ols(X_l, Y_l, f_l, X_u, f_u, w_l = NULL, w_u = NULL)
X_l |
(matrix): n x p matrix of covariates in the labeled data. |
Y_l |
(vector): n-vector of labeled outcomes. |
f_l |
(vector): n-vector of predictions in the labeled data. |
X_u |
(matrix): N x p matrix of covariates in the unlabeled data. |
f_u |
(vector): N-vector of predictions in the unlabeled data. |
w_l |
(ndarray, optional): Sample weights for the labeled data set. Defaults to a vector of ones. |
w_u |
(ndarray, optional): Sample weights for the unlabeled data set. Defaults to a vector of ones. |
Prediction Powered Inference (Angelopoulos et al., 2023) https://www.science.org/doi/10.1126/science.adi6000
(list): A list containing the following:
(vector): vector of PPI OLS regression coefficient estimates.
(vector): vector of standard errors of the coefficients.
(vector): vector of the rectifier OLS regression coefficient estimates.
dat <- simdat()
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled",])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled",])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
ppi_ols(X_l, Y_l, f_l, X_u, f_u)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.