View source: R/postpi_boot_ols.R
postpi_boot_ols | R Documentation |
Helper function for PostPI OLS estimation (bootstrap correction)
postpi_boot_ols(
X_l,
Y_l,
f_l,
X_u,
f_u,
nboot = 100,
se_type = "par",
rel_func = "lm",
scale_se = TRUE,
n_t = Inf,
seed = NULL
)
X_l |
(matrix): n x p matrix of covariates in the labeled data. |
Y_l |
(vector): n-vector of labeled outcomes. |
f_l |
(vector): n-vector of predictions in the labeled data. |
X_u |
(matrix): N x p matrix of covariates in the unlabeled data. |
f_u |
(vector): N-vector of predictions in the unlabeled data. |
nboot |
(integer): Number of bootstrap samples. Defaults to 100. |
se_type |
(string): Which method to calculate the standard errors. Options include "par" (parametric) or "npar" (nonparametric). Defaults to "par". |
rel_func |
(string): Method for fitting the relationship model. Options include "lm" (linear model), "rf" (random forest), and "gam" (generalized additive model). Defaults to "lm". |
scale_se |
(boolean): Logical argument to scale relationship model error variance. Defaults to TRUE; FALSE option is retained for posterity. |
n_t |
(integer, optional) Size of the dataset used to train the
prediction function (necessary if |
seed |
(optional) An |
Methods for correcting inference based on outcomes predicted by machine learning (Wang et al., 2020) https://www.pnas.org/doi/abs/10.1073/pnas.2001238117
A list of outputs: estimate of inference model parameters and corresponding standard error based on both parametric and non-parametric bootstrap methods.
dat <- simdat(model = "ols")
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled",])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled",])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
postpi_boot_ols(X_l, Y_l, f_l, X_u, f_u, nboot = 200)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.