View source: R/ppi_plusplus_ols.R
ppi_plusplus_ols_est | R Documentation |
Helper function for PPI++ OLS estimation (point estimate)
ppi_plusplus_ols_est(
X_l,
Y_l,
f_l,
X_u,
f_u,
lhat = NULL,
coord = NULL,
w_l = NULL,
w_u = NULL
)
X_l |
(matrix): n x p matrix of covariates in the labeled data. |
Y_l |
(vector): n-vector of labeled outcomes. |
f_l |
(vector): n-vector of predictions in the labeled data. |
X_u |
(matrix): N x p matrix of covariates in the unlabeled data. |
f_u |
(vector): N-vector of predictions in the unlabeled data. |
lhat |
(float, optional): Power-tuning parameter (see
https://arxiv.org/abs/2311.01453). The default value, |
coord |
(int, optional): Coordinate for which to optimize
|
w_l |
(ndarray, optional): Sample weights for the labeled data set. Defaults to a vector of ones. |
w_u |
(ndarray, optional): Sample weights for the unlabeled data set. Defaults to a vector of ones. |
PPI++: Efficient Prediction Powered Inference (Angelopoulos et al., 2023) https://arxiv.org/abs/2311.01453
(vector): vector of prediction-powered point estimates of the OLS coefficients.
dat <- simdat(model = "ols")
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled",])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled",])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
ppi_plusplus_ols_est(X_l, Y_l, f_l, X_u, f_u)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.