pspa_ols | R Documentation |
Helper function for PSPA OLS for linear regression
pspa_ols(X_l, Y_l, f_l, X_u, f_u, weights = NA, alpha = 0.05)
X_l |
(matrix): n x p matrix of covariates in the labeled data. |
Y_l |
(vector): n-vector of labeled outcomes. |
f_l |
(vector): n-vector of predictions in the labeled data. |
X_u |
(matrix): N x p matrix of covariates in the unlabeled data. |
f_u |
(vector): N-vector of predictions in the unlabeled data. |
weights |
(array): p-dimensional array of weights vector for variance reduction. PSPA will estimate the weights if not specified. |
alpha |
(scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05. |
Post-prediction adaptive inference (Miao et al. 2023) https://arxiv.org/abs/2311.14220
A list of outputs: estimate of inference model parameters and corresponding standard error.
dat <- simdat(model = "ols")
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled",])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled",])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
pspa_ols(X_l, Y_l, f_l, X_u, f_u)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.