View source: R/pspa_logistic.R
| pspa_logistic | R Documentation | 
Helper function for PSPA logistic regression
pspa_logistic(X_l, Y_l, f_l, X_u, f_u, weights = NA, alpha = 0.05)
| X_l | (matrix): n x p matrix of covariates in the labeled data. | 
| Y_l | (vector): n-vector of binary labeled outcomes. | 
| f_l | (vector): n-vector of binary predictions in the labeled data. | 
| X_u | (matrix): N x p matrix of covariates in the unlabeled data. | 
| f_u | (vector): N-vector of binary predictions in the unlabeled data. | 
| weights | (array): p-dimensional array of weights vector for variance reduction. PSPA will estimate the weights if not specified. | 
| alpha | (scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05 | 
Post-prediction adaptive inference (Miao et al. 2023) https://arxiv.org/abs/2311.14220
A list of outputs: estimate of inference model parameters and corresponding standard error.
dat <- simdat(model = "logistic")
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled",])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled",])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
pspa_logistic(X_l, Y_l, f_l, X_u, f_u)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.