ppi_quantile | R Documentation |
Helper function for PPI quantile estimation
ppi_quantile(Y_l, f_l, f_u, q, alpha = 0.05, exact_grid = FALSE)
Y_l |
(vector): n-vector of labeled outcomes. |
f_l |
(vector): n-vector of predictions in the labeled data. |
f_u |
(vector): N-vector of predictions in the unlabeled data. |
q |
(float): Quantile to estimate. Must be in the range (0, 1). |
alpha |
(scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05. |
exact_grid |
(bool, optional): Whether to compute the exact solution (TRUE) or an approximate solution based on a linearly spaced grid of 5000 values (FALSE). |
Prediction Powered Inference (Angelopoulos et al., 2023) https://www.science.org/doi/10.1126/science.adi6000
tuple: Lower and upper bounds of the prediction-powered confidence interval for the quantile.
dat <- simdat(model = "quantile")
form <- Y - f ~ X1
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
ppi_quantile(Y_l, f_l, f_u, q = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.