View source: R/ppi_plusplus_quantile.R
| ppi_plusplus_quantile | R Documentation | 
Helper function for PPI++ quantile estimation
ppi_plusplus_quantile(
  Y_l,
  f_l,
  f_u,
  q,
  alpha = 0.05,
  exact_grid = FALSE,
  w_l = NULL,
  w_u = NULL
)
Y_l | 
 (vector): n-vector of labeled outcomes.  | 
f_l | 
 (vector): n-vector of predictions in the labeled data.  | 
f_u | 
 (vector): N-vector of predictions in the unlabeled data.  | 
q | 
 (float): Quantile to estimate. Must be in the range (0, 1).  | 
alpha | 
 (scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05.  | 
exact_grid | 
 (bool, optional): Whether to compute the exact solution (TRUE) or an approximate solution based on a linearly spaced grid of 5000 values (FALSE).  | 
w_l | 
 (ndarray, optional): Sample weights for the labeled data set. Defaults to a vector of ones.  | 
w_u | 
 (ndarray, optional): Sample weights for the unlabeled data set. Defaults to a vector of ones.  | 
PPI++: Efficient Prediction Powered Inference (Angelopoulos et al., 2023) https://arxiv.org/abs/2311.01453
tuple: Lower and upper bounds of the prediction-powered confidence interval for the quantile.
dat <- simdat(model = "quantile")
form <- Y - f ~ X1
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
ppi_plusplus_quantile(Y_l, f_l, f_u, q = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.