pspa_y | R Documentation |
pspa_y
function conducts post-prediction M-Estimation.
pspa_y(
X_lab = NA,
X_unlab = NA,
Y_lab,
Yhat_lab,
Yhat_unlab,
alpha = 0.05,
weights = NA,
quant = NA,
intercept = FALSE,
method
)
X_lab |
Array or data.frame containing observed covariates in labeled data. |
X_unlab |
Array or data.frame containing observed or predicted covariates in unlabeled data. |
Y_lab |
Array or data.frame of observed outcomes in labeled data. |
Yhat_lab |
Array or data.frame of predicted outcomes in labeled data. |
Yhat_unlab |
Array or data.frame of predicted outcomes in unlabeled data. |
alpha |
Specifies the confidence level as 1 - alpha for confidence intervals. |
weights |
weights vector PSPA linear regression (d-dimensional, where d equals the number of covariates). |
quant |
quantile for quantile estimation |
intercept |
Boolean indicating if the input covariates' data contains the intercept (TRUE if the input data contains) |
method |
indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson". |
A summary table presenting point estimates, standard error, confidence intervals (1 - alpha), P-values, and weights.
data <- sim_data_y()
X_lab <- data$X_lab
X_unlab <- data$X_unlab
Y_lab <- data$Y_lab
Yhat_lab <- data$Yhat_lab
Yhat_unlab <- data$Yhat_unlab
pspa_y(X_lab = X_lab, X_unlab = X_unlab,
Y_lab = Y_lab, Yhat_lab = Yhat_lab, Yhat_unlab = Yhat_unlab,
alpha = 0.05, method = "ols")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.