R/model.R

Defines functions restartModel updateModel init_sd_numeric

####################################################
## INITIALISE AND UPDATE THE MODEL
####################################################

# Initial standard deviation for numerical sampling model.
init_sd_numeric <- function(param)
{
  # Dependent parameters define the standard deviation as
  # a portion of the size of the domain interval. In this case,
  # 0.5 indicates half of the interval, equivalent  to
  # (domain[2] - domain[1]) * 0.5
  if (param[["is_dependent"]] || param[["transform"]] == "log")
    return(0.5)
  domain <- param[["domain"]]
  (domain[[2L]] - domain[[1L]]) * 0.5
}

## Initialisation of the model after the first iteration
##
# IN: configurations matrix, parameters datastructure
##
# OUTPUT: A list of list of vectors. The higher-level list contains
# one element per categorical parameter.  Each categorical parameter
# contains a list of vector. This list contains elements which are the
# .ID. of the configuration. 
initialiseModel <- function (parameters, configurations)
{
  nbConfigurations <- nrow(configurations)
  ids <- as.character(configurations[[".ID."]])
  param_names <- parameters$names_variable
  model <- setNames(vector("list", length(param_names)), param_names)
                    
  for (currentParameter in param_names) {
    param <- parameters$get(currentParameter)
    type <- param[["type"]]
    if (type == "c") {
      nbValues <- length(param[["domain"]])
      value <- rep_len(1. / nbValues, nbValues)
      param <- rep_len(list(value), nbConfigurations)
    } else {
      if (type == "r" || type == "i") {
        sd <- init_sd_numeric(param)
        values <- configurations[[currentParameter]]
      } else if (type == "o") {
        domain <- param[["domain"]]
        sd <- (length(domain) - 1L) * 0.5
        values <- match(configurations[[currentParameter]], domain)
      } else {
        irace_internal_error("Unknown parameter type '", type, "'")
      }
      # Assign current parameter value to model.
      param <- mapply(c, sd, values, SIMPLIFY=FALSE, USE.NAMES=FALSE)
    }
    names(param) <- ids
    model[[currentParameter]] <- param
  }
  model
}

updateModel <- function(parameters, eliteConfigurations, oldModel,
                        indexIteration, nbIterations, nbNewConfigurations, elitist)
{
  dec_factor <- (1 - ((indexIteration - 1) / nbIterations))
  add_factor <- ((indexIteration - 1) / nbIterations)
  num_factor <- ((1 / nbNewConfigurations)^(1 / parameters$nbVariable))
  prob_max <- 0.2^(1. / parameters$nbVariable)
  update_prob <- if (elitist) function(p, idx) {
    # Decrease first all values in the vector:
    p <- p * dec_factor
    p[idx] <- p[idx] + add_factor
    # Normalize probabilities.
    p <- p / sum(p)
    # Prevent probabilities from growing too much.
    p <- pmin.int(p, prob_max)
    p <- p / sum(p)
    p / sum(p)
  } else function(p, idx) {
    # Decrease first all values in the vector:
    p <- p * dec_factor
    p[idx] <- p[idx] + add_factor
    # Normalize probabilities.
    p <- p / sum(p)
  }
  
  param_names <- parameters$names_variable
  model_ids <- names(oldModel[[1L]])
  # If the elite is older than the current iteration, it has its own model
  # that has evolved with time. If the elite is new (generated in the current
  # iteration), it does not have any, and we have to copy the one from its
  # parent. The condition of the IF statement is for checking whether the
  # configuration already has its model or not.
  elite_ids <- as.character(eliteConfigurations[[".ID."]])
  not_in <- elite_ids %not_in% model_ids
  ids_in_model <- elite_ids
  # If a configuration does not have any entry, copy the parent one.
  ids_in_model[not_in] <- as.character(eliteConfigurations[[".PARENT."]][not_in])
  newModel <- setNames(vector("list", length(param_names)), param_names)  
  
  for (currentParameter in param_names) {
    param <- parameters$get(currentParameter)
    irace_assert(all(ids_in_model %in% names(oldModel[[currentParameter]])))
    this_model <- oldModel[[currentParameter]][ids_in_model]
    values <- eliteConfigurations[[currentParameter]]
    values_not_na <- !is.na(values)
    values <- values[values_not_na]
    type <- param[["type"]]
    if (type == "c") {
      # Find the value that has been "chosen" to increase its probability.
      values <- match(values, param[["domain"]])
      this_model[values_not_na] <- mapply(update_prob, this_model[values_not_na], values, SIMPLIFY=FALSE)
    } else {
      irace_assert(type %in% c("i", "r", "o"))
      if (type == "o") 
        values <- match(values, param[["domain"]])
      this_model[values_not_na] <- mapply(function(p, value) c(p[[1L]] * num_factor, value),
                                          this_model[values_not_na], values, SIMPLIFY=FALSE)
    }
    names(this_model) <- elite_ids
    newModel[[currentParameter]] <- this_model
  }
  newModel
}

printModel <- function (model)
{
  cat("# Model:\n")
  print(model)
}

restartModel <- function(model, configurations, restart_ids, parameters,
                         nbConfigurations)
{
  back_factor <- nbConfigurations^(2 / parameters$nbVariable)
  second_factor <- (1 / nbConfigurations)^(1 / parameters$nbVariable)

  model_ids <- names(model[[1L]])
  restart_ids <- as.character(sort.int(as.integer(restart_ids)))
  not_in <- restart_ids %not_in% model_ids
  configurations <- configurations[configurations[[".ID."]] %in% restart_ids, c(".ID.", ".PARENT.")]
  restart_ids[not_in] <- configurations[[".PARENT."]][order(as.integer(configurations[[".ID."]]))][not_in]
  restart_ids <- as.character(unique(restart_ids))
  restart_ids <- restart_ids[!is.na(restart_ids)]
  
  for (pname in parameters$names_variable) {
    model_param <- model[[pname]]
    irace_assert (all(restart_ids %in% names(model_param)), {
      cat("Param:", pname, "\n")
      print(restart_ids)
      print(model)
      print(configurations[, c(".ID.", ".PARENT.")])
    })
    param <- parameters$get(pname)
    type <- param[["type"]]
    if (type == "c") {
      model[[pname]][restart_ids] <- sapply(model_param[restart_ids],
                                            function(p) {
                                              p <- 0.9 * p + 0.1 * max(p)
                                              p / sum(p)
                                            }, simplify=FALSE)
    } else {
      if (type == "i" || type == "r") {
        value <- init_sd_numeric(param)
      } else {
        irace_assert(type == "o")
        value <- (length(param[["domain"]]) - 1L) * 0.5
      }
      # Bring back the value 2 iterations or to the second iteration value.
      value <- value * second_factor
      model[[pname]][restart_ids] <- sapply(
        model_param[restart_ids],
        function(x) c(min(x[[1L]] * back_factor, value), x[[2L]]),
        simplify=FALSE)
    }
  }
  model
}

Try the irace package in your browser

Any scripts or data that you put into this service are public.

irace documentation built on April 3, 2025, 10:03 p.m.