Akaike Information Criterium

Description

akaikeic calculates the Akaike Information Criterium (AIC) of a model.
akaikeicc calculates the corrected Akaike Information Criterium (AICc) for small samples.

Usage

1
2
3
akaikeic(lnL, k)

akaikeicc(lnL, k, n)

Arguments

lnL

Log-likelihood of the model.

k

Number of parameters of the model.

n

Sample size.

Details

AIC = 2 * k - 2 * lnL

AICc = 2 * k - 2 * lnL + 2 * k * (k + 1) / (n - k - 1)

Value

A number with the AIC value for a model with k parameters and Log-likelihood lnL, or the AICc value for a model with k parameters, Log-likelihood lnL and sample size n.

See Also

weight_of_evidence

Examples

1
2
3
akaikeic(-1485.926, 3)
akaikeicc(736.47, 6, 15)
akaikeicc(736.47, 6, 100)