Nothing
#' @title Creates a Kaplan-Meier plot for survfit object.
#' @description Creates a Kaplan-Meier plot with at risk tables below for survfit object.
#' @param sfit a survfit object
#' @param table logical: Create a table graphic below the K-M plot, indicating at-risk numbers?
#' @param table.censor logical: Add numbers of censored in table graphic
#' @param xlabs x-axis label
#' @param ylabs y-axis label
#' @param xlims numeric: list of min and max for x-axis. Default = c(0,max(sfit$time))
#' @param ylims numeric: list of min and max for y-axis. Default = c(0,1)
#' @param surv.scale scale transformation of survival curves. Allowed values are "default" or "percent".
#' @param ystratalabs character list. A list of names for each strata. Default = names(sfit$strata)
#' @param ystrataname The legend name. Default = "Strata"
#' @param timeby numeric: control the granularity along the time-axis; defaults to 7 time-points. Default = signif(max(sfit$time)/7, 1)
#' @param main plot title
#' @param pval logical: add the pvalue to the plot?
#' @param pval.size numeric value specifying the p-value text size. Default is 5.
#' @param pval.coord numeric vector, of length 2, specifying the x and y coordinates of the p-value. Default values are NULL
#' @param pval.testname logical: add '(Log-rank)' text to p-value. Default = F
#' @param marks logical: should censoring marks be added?
#' @param shape what shape should the censoring marks be, default is a vertical line
#' @param med should a median line be added to the plot? Default = F
#' @param legend logical. should a legend be added to the plot?
#' @param legendposition numeric. x, y position of the legend if plotted. Default=c(0.85,0.8)
#' @param ci logical. Should confidence intervals be plotted. Default = FALSE
#' @param subs = NULL,
#' @param label.nrisk Numbers at risk label. Default = "Numbers at risk"
#' @param size.label.nrisk Font size of label.nrisk. Default = 10
#' @param linecols Character or Character vector. Colour brewer pallettes too colour lines. Default ="Set1", "black" for black with dashed line, character vector for the customization of line colors.
#' @param dashed logical. Should a variety of linetypes be used to identify lines. Default = FALSE
#' @param cumhaz Show cumulative incidence function, Default: F
#' @param cluster.option Cluster option for p value, Option: "None", "cluster", "frailty", Default: "None"
#' @param cluster.var Cluster variable
#' @param data select specific data - for reactive input, Default = NULL
#' @param cut.landmark cut-off for landmark analysis, Default = NULL
#' @param showpercent Shows the percentages on the right side.
#' @param status.cmprsk Status value when competing risk analysis, Default = 2nd level of status variable
#' @param linewidth Line witdh, Default = 0.75
#' @param theme Theme of the plot, Default = NULL, "nejm" for NEJMOA style, "jama" for JAMA style
#' @param nejm.infigure.ratiow Ratio of infigure width to total width, Default = 0.6
#' @param nejm.infigure.ratioh Ratio of infigure height to total height, Default = 0.5
#' @param nejm.infigure.ylim y-axis limit of infigure, Default = c(0,1)
#' @param surv.by breaks unit in y-axis, default = NULL(ggplot default)
#' @param hr logical: add the hazard ratio to the plot?
#' @param hr.size numeric value specifying the HR text size. Default is 5.
#' @param hr.coord numeric vector, of length 2, specifying the x and y coordinates of the p-value. Default values are NULL
#' @param hr.testname logical: add '(Log-rank)' text to p-value. Default = F
#' @param ... PARAM_DESCRIPTION
#' @return Plot
#' @details DETAILS
#' @author Jinseob Kim, but heavily modified version of a script created by Michael Way.
#' \url{https://github.com/michaelway/ggkm/}
#' I have packaged this function, added functions to namespace and included a range of new parameters.
#' @examples
#' library(survival)
#' data(colon)
#' fit <- survfit(Surv(time, status) ~ rx, data = colon)
#' jskm(fit, timeby = 500)
#' @rdname jskm
#' @importFrom ggplot2 ggplot
#' @importFrom ggplot2 aes
#' @importFrom ggplot2 geom_step
#' @importFrom ggplot2 scale_linetype_manual
#' @importFrom ggplot2 scale_colour_manual
#' @importFrom ggplot2 theme_bw
#' @importFrom ggplot2 theme
#' @importFrom ggplot2 element_text
#' @importFrom ggplot2 scale_x_continuous
#' @importFrom ggplot2 scale_y_continuous
#' @importFrom ggplot2 element_blank
#' @importFrom ggplot2 element_line
#' @importFrom ggplot2 element_rect
#' @importFrom ggplot2 labs
#' @importFrom ggplot2 ggtitle
#' @importFrom ggplot2 geom_point
#' @importFrom ggplot2 geom_blank
#' @importFrom ggplot2 annotate
#' @importFrom ggplot2 geom_text
#' @importFrom ggplot2 scale_y_discrete
#' @importFrom ggplot2 xlab
#' @importFrom ggplot2 ylab
#' @importFrom ggplot2 ggsave
#' @importFrom ggplot2 scale_colour_brewer
#' @importFrom ggplot2 geom_ribbon
#' @importFrom grid unit
#' @importFrom ggpubr ggarrange
#' @importFrom stats pchisq time as.formula
#' @importFrom patchwork inset_element
#' @importFrom survival survfit survdiff coxph Surv cluster frailty
#' @importFrom cmprsk cuminc crr
#' @export
jskm <- function(sfit,
table = FALSE,
table.censor = FALSE,
xlabs = "Time-to-event",
ylabs = NULL,
xlims = c(0, max(sfit$time)),
ylims = c(0, 1),
surv.scale = c("default", "percent"),
ystratalabs = NULL,
ystrataname = "Strata",
timeby = signif(max(sfit$time) / 7, 1),
main = "",
pval = FALSE,
pval.size = 5,
pval.coord = c(NULL, NULL),
pval.testname = T,
marks = TRUE,
shape = 3,
med = FALSE,
legend = TRUE,
legendposition = c(0.85, 0.8),
ci = FALSE,
subs = NULL,
label.nrisk = "Numbers at risk",
size.label.nrisk = 10,
linecols = "Set1",
dashed = FALSE,
cumhaz = F,
cluster.option = "None",
cluster.var = NULL,
data = NULL,
cut.landmark = NULL,
showpercent = F,
status.cmprsk = NULL,
linewidth = 0.75,
theme = NULL,
nejm.infigure.ratiow = 0.6,
nejm.infigure.ratioh = 0.5,
nejm.infigure.ylim = c(0, 1),
surv.by = NULL,
hr = FALSE,
hr.size = 5,
hr.coord = c(NULL, NULL),
hr.testname = F,
...) {
#################################
# sorting the use of subsetting #
#################################
test_type <- n.risk <- n.censor <- surv <- strata <- lower <- upper <- NULL
times <- seq(0, max(sfit$time), by = timeby)
has_weights <- !is.null(sfit$call$weights)
if (!is.null(theme) && theme == "nejm") legendposition <- legendposition
if (is.null(subs)) {
if (length(levels(summary(sfit)$strata)) == 0) {
subs1 <- 1
subs2 <- 1:length(summary(sfit, censored = T)$time)
subs3 <- 1:length(summary(sfit, times = times, extend = TRUE)$time)
} else {
subs1 <- 1:length(levels(summary(sfit)$strata))
subs2 <- 1:length(summary(sfit, censored = T)$strata)
subs3 <- 1:length(summary(sfit, times = times, extend = TRUE)$strata)
}
} else {
for (i in 1:length(subs)) {
if (i == 1) {
ssvar <- paste("(?=.*\\b=", subs[i], sep = "")
}
if (i == length(subs)) {
ssvar <- paste(ssvar, "\\b)(?=.*\\b=", subs[i], "\\b)", sep = "")
}
if (!i %in% c(1, length(subs))) {
ssvar <- paste(ssvar, "\\b)(?=.*\\b=", subs[i], sep = "")
}
if (i == 1 & i == length(subs)) {
ssvar <- paste("(?=.*\\b=", subs[i], "\\b)", sep = "")
}
}
subs1 <- which(regexpr(ssvar, levels(summary(sfit)$strata), perl = T) != -1)
subs2 <- which(regexpr(ssvar, summary(sfit, censored = T)$strata, perl = T) != -1)
subs3 <- which(regexpr(ssvar, summary(sfit, times = times, extend = TRUE)$strata, perl = T) != -1)
}
if ((!is.null(subs) | !is.null(sfit$states)) & is.null(status.cmprsk)) pval <- FALSE
##################################
# data manipulation pre-plotting #
##################################
if (is.null(ylabs)) {
if (cumhaz | !is.null(sfit$states)) {
ylabs <- "Cumulative incidence"
} else {
ylabs <- "Survival probability"
}
}
if (!is.null(status.cmprsk)) {
if (length(levels(summary(sfit)$strata)) == 0) {
# [subs1]
if (is.null(ystratalabs)) ystratalabs <- as.character("All")
} else {
# [subs1]
if (is.null(ystratalabs)) {
ystratalabs <- as.character(names(sfit$strata))
ystratalabs <- gsub("^group=*", "", ystratalabs)
}
}
} else {
if (length(levels(summary(sfit)$strata)) == 0) {
# [subs1]
if (is.null(ystratalabs)) {
ystratalabs <- as.character("All")
}
nc <- length(summary(sfit)$table)
L <- summary(sfit)$table[nc - 1][[1]]
U <- summary(sfit)$table[nc][[1]]
median_time <- summary(sfit)$table["median"][[1]]
ystratalabs2 <- paste0(ystratalabs, " (median : ", median_time, ", ", sfit$conf.int * 100, "% CI : ", L, " - ", U, ")")
} else {
# [subs1]
if (is.null(ystratalabs)) {
ystratalabs <- as.character(names(sfit$strata))
ystratalabs <- gsub("^group=*", "", ystratalabs)
}
ystratalabs2 <- NULL
for (i in 1:length(levels(summary(sfit)$strata))) {
nc <- ncol(summary(sfit)$table)
L <- summary(sfit)$table[, nc - 1][[i]]
U <- summary(sfit)$table[, nc][[i]]
median_time <- summary(sfit)$table[, "median"][[i]]
ystratalabs2 <- c(ystratalabs2, paste0(ystratalabs[[i]], " (median : ", median_time, ", ", sfit$conf.int * 100, "% CI : ", L, " - ", U, ")"))
}
}
}
if (is.null(ystrataname)) ystrataname <- "Strata"
m <- max(nchar(ystratalabs))
times <- seq(0, max(sfit$time), by = timeby)
if (length(levels(summary(sfit)$strata)) == 0) {
Factor <- factor(rep("All", length(subs2)))
} else {
Factor <- factor(summary(sfit, censored = T)$strata[subs2], levels = names(sfit$strata))
}
# Data to be used in the survival plot
if (is.null(sfit$state)) { # no cmprsk
df <- data.frame(
time = sfit$time[subs2],
n.risk = sfit$n.risk[subs2],
n.event = sfit$n.event[subs2],
n.censor = sfit$n.censor[subs2],
surv = sfit$surv[subs2],
strata = Factor,
upper = sfit$upper[subs2],
lower = sfit$lower[subs2]
)
} else { # cmprsk
if (is.null(status.cmprsk)) {
status.cmprsk <- sfit$states[2]
}
col.cmprsk <- which(sfit$state == status.cmprsk)
df <- data.frame(
time = sfit$time[subs2],
n.risk = sfit$n.risk[, 1][subs2],
n.event = sfit$n.event[, col.cmprsk][subs2],
n.censor = sfit$n.censor[subs2],
surv = sfit$pstate[, col.cmprsk][subs2],
strata = Factor,
upper = sfit$upper[, col.cmprsk][subs2],
lower = sfit$lower[, col.cmprsk][subs2]
)
}
form <- sfit$call$formula
time_var <- all.vars(form[[2]])[1]
event_var <- all.vars(form[[2]])[2]
group_var <- all.vars(form)[3]
if (!is.null(cut.landmark)) {
if (is.null(data)) {
data <- tryCatch(eval(sfit$call$data), error = function(e) e)
if ("error" %in% class(data)) {
stop("Landmark analysis requires data object. please input 'data' option")
}
}
var.time <- as.character(form[[2]][[2]])
var.event <- as.character(form[[2]][[3]])
if (length(var.event) > 1) {
var.event <- setdiff(var.event, as.character(as.symbol(var.event)))
var.event <- var.event[sapply(var.event, function(x) {
"warning" %in% class(tryCatch(as.numeric(x), warning = function(w) w))
})]
}
data1 <- data
data1[[var.event]][data1[[var.time]] >= cut.landmark] <- 0
data1[[var.time]][data1[[var.time]] >= cut.landmark] <- cut.landmark
sfit1 <- survfit(as.formula(form), data1)
sfit2 <- survfit(as.formula(form), data[data[[var.time]] >= cut.landmark, ])
if (is.null(sfit$states)) {
if (length(levels(Factor)) == 1) {
df2 <- merge(subset(df, time >= cut.landmark)[, c("time", "n.risk", "n.event", "n.censor", "strata")],
data.frame(time = sfit2$time, surv = sfit2$surv, strata = "All", upper = sfit2$upper, lower = sfit2$lower),
by = c("time", "strata")
)
} else {
df2 <- merge(subset(df, time >= cut.landmark)[, c("time", "n.risk", "n.event", "n.censor", "strata")],
data.frame(time = sfit2$time, surv = sfit2$surv, strata = rep(names(sfit2$strata), sfit2$strata), upper = sfit2$upper, lower = sfit2$lower),
by = c("time", "strata")
)
}
df11 <- rbind(subset(df, time < cut.landmark), df2[, names(df)])
df <- rbind(df11, data.frame(time = cut.landmark, n.risk = summary(sfit, times = cut.landmark)$n.risk[[1]], n.event = 0, n.censor = 0, surv = 1, strata = levels(df$strata), upper = 1, lower = 1))
} else {
if (is.null(status.cmprsk)) {
status.cmprsk <- sfit$states[2]
}
col.cmprsk <- which(sfit$state == status.cmprsk)
if (length(levels(Factor)) == 1) {
df2 <- merge(subset(df, time >= cut.landmark)[, c("time", "n.risk", "n.event", "n.censor", "strata")],
data.frame(time = sfit2$time, surv = sfit2$pstate[, col.cmprsk], strata = "All", upper = sfit2$upper[, col.cmprsk], lower = sfit2$lower[, col.cmprsk]),
by = c("time", "strata")
)
} else {
df2 <- merge(subset(df, time >= cut.landmark)[, c("time", "n.risk", "n.event", "n.censor", "strata")],
data.frame(time = sfit2$time, surv = sfit2$pstate[, col.cmprsk], strata = rep(names(sfit2$strata), sfit2$strata), upper = sfit2$upper[, col.cmprsk], lower = sfit2$lower[, col.cmprsk]),
by = c("time", "strata")
)
}
df11 <- rbind(subset(df, time < cut.landmark), df2[, names(df)])
df <- rbind(df11, data.frame(time = cut.landmark, n.risk = summary(sfit, times = cut.landmark)$n.risk[[1]], n.event = 0, n.censor = 0, surv = 0, strata = levels(df$strata), upper = 0, lower = 0))
}
}
if (cumhaz & is.null(sfit$states)) {
upper.new <- 1 - df$lower
lower.new <- 1 - df$upper
df$surv <- 1 - df$surv
df$lower <- lower.new
df$upper <- upper.new
}
# Final changes to data for survival plot
levels(df$strata) <- ystratalabs
zeros <- data.frame(
time = 0, n.risk = NA, n.event = NA, n.censor = NA, surv = 1,
strata = factor(ystratalabs, levels = levels(df$strata)),
upper = 1, lower = 1
)
if (cumhaz | !is.null(sfit$states)) {
zeros$surv <- 0
zeros$lower <- 0
zeros$upper <- 0
}
df <- rbind(zeros, df)
d <- length(levels(df$strata))
###################################
# specifying axis parameteres etc #
###################################
if (dashed == TRUE | all(linecols == "black")) {
linetype <- c("solid", "dashed", "dotted", "dotdash", "longdash", "twodash", "1F", "F1", "4C88C488", "12345678")
} else {
linetype <- c("solid", "solid", "solid", "solid", "solid", "solid", "solid", "solid", "solid", "solid", "solid")
}
# Scale transformation
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
surv.scale <- match.arg(surv.scale)
scale_labels <- ggplot2::waiver()
if (surv.scale == "percent") scale_labels <- scales::percent
p <- ggplot2::ggplot(df, aes(x = time, y = surv, colour = strata, linetype = strata)) +
ggtitle(main)
linecols2 <- linecols
if (all(linecols == "black")) {
linecols <- "Set1"
p <- ggplot2::ggplot(df, aes(x = time, y = surv, linetype = strata)) +
ggtitle(main)
}
# Set up theme elements
p <- p + theme_bw() +
theme(
axis.title.x = element_text(vjust = 0.7),
panel.grid.minor = element_blank(),
axis.line = element_line(linewidth = 0.5, colour = "black"),
legend.position = "inside",
legend.position.inside = legendposition,
legend.background = element_rect(fill = NULL),
legend.key = element_rect(colour = NA),
panel.border = element_blank(),
# plot.margin = unit(c(0, 1, .5, ifelse(m < 10, 1.5, 2.5)), "lines"),
axis.line.x = element_line(linewidth = 0.5, linetype = "solid", colour = "black"),
axis.line.y = element_line(linewidth = 0.5, linetype = "solid", colour = "black")
) +
scale_x_continuous(xlabs, breaks = times, limits = xlims)
if (!is.null(surv.by)) {
p <- p + scale_y_continuous(ylabs, limits = ylims, labels = scale_labels, breaks = seq(ylims[1], ylims[2], by = surv.by))
} else {
p <- p + scale_y_continuous(ylabs, limits = ylims, labels = scale_labels)
}
if (!is.null(theme) && theme == "jama") {
p <- p + theme(
panel.grid.major.x = element_blank()
)
} else {
p <- p + theme(
panel.grid.major = element_blank()
)
}
# Removes the legend:
if (legend == FALSE) {
p <- p + guides(colour = "none", linetype = "none")
}
# Add lines too plot
if (is.null(cut.landmark)) {
if (med == T & is.null(status.cmprsk)) {
p <- p + geom_step(linewidth = linewidth) +
scale_linetype_manual(name = ystrataname, values = linetype, labels = ystratalabs2)
} else {
p <- p + geom_step(linewidth = linewidth) +
scale_linetype_manual(name = ystrataname, values = linetype, labels = ystratalabs)
}
} else {
if (med == T & is.null(status.cmprsk)) {
p <- p +
scale_linetype_manual(name = ystrataname, values = linetype, labels = ystratalabs2) +
geom_step(data = subset(df, time >= cut.landmark), linewidth = linewidth) + geom_step(data = subset(df, time < cut.landmark), linewidth = linewidth)
} else {
p <- p +
scale_linetype_manual(name = ystrataname, values = linetype, labels = ystratalabs) +
geom_step(data = subset(df, time >= cut.landmark), linewidth = linewidth) + geom_step(data = subset(df, time < cut.landmark), linewidth = linewidth)
}
}
brewer.palette <- c(
"BrBG", "PiYG", "PRGn", "PuOr", "RdBu", "RdGy", "RdYlBu", "RdYlGn", "Spectral", "Accent", "Dark2", "Paired", "Pastel1", "Pastel2",
"Set1", "Set2", "Set3", "Blues", "BuGn", "BuPu", "GnBu", "Greens", "Greys", "Oranges", "OrRd", "PuBu", "PuBuGn", "PuRd", "Purples",
"RdPu", "Reds", "YlGn", "YlGnBu", "YlOrBr", "YlOrRd"
)
if (!is.null(theme) && theme == "jama") {
col.pal <- c("#00AFBB", "#E7B800", "#FC4E07")
col.pal <- rep(col.pal, ceiling(length(ystratalabs) / 3))
} else if (all(linecols %in% brewer.palette)) {
col.pal <- NULL
} else {
col.pal <- linecols
col.pal <- rep(col.pal, ceiling(length(ystratalabs) / length(linecols)))
}
if (is.null(cut.landmark)) {
if (med == T & is.null(status.cmprsk)) {
if (is.null(col.pal)) {
p <- p + scale_colour_brewer(name = ystrataname, palette = linecols, labels = ystratalabs2)
} else {
p <- p + scale_color_manual(name = ystrataname, values = col.pal, labels = ystratalabs2)
}
} else {
if (is.null(col.pal)) {
p <- p + scale_colour_brewer(name = ystrataname, palette = linecols, labels = ystratalabs)
} else {
p <- p + scale_color_manual(name = ystrataname, values = col.pal, labels = ystratalabs)
}
}
} else {
if (med == T & is.null(status.cmprsk)) {
if (is.null(col.pal)) {
p <- p + scale_colour_brewer(name = ystrataname, palette = linecols, labels = ystratalabs2)
} else {
p <- p + scale_color_manual(name = ystrataname, values = col.pal, labels = ystratalabs2)
}
} else {
if (is.null(col.pal)) {
p <- p + scale_colour_brewer(name = ystrataname, palette = linecols, labels = ystratalabs)
} else {
p <- p + scale_color_manual(name = ystrataname, values = col.pal, labels = ystratalabs)
}
}
}
# Add censoring marks to the line:
if (marks == TRUE) {
p <- p + geom_point(data = subset(df, n.censor >= 1), aes(x = time, y = surv, colour = strata), shape = shape)
}
# Add median value
if (med == TRUE & is.null(cut.landmark) & is.null(status.cmprsk)) {
if (length(levels(summary(sfit)$strata)) == 0) {
median_time <- summary(sfit)$table["median"][[1]]
if (!is.na(median_time)) {
p <- p + annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") +
annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
} else {
for (i in 1:length(levels(summary(sfit)$strata))) {
median_time <- summary(sfit)$table[, "median"][[i]]
if (!is.na(median_time)) {
p <- p +
annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") +
annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
}
}
}
if (med == TRUE & !is.null(cut.landmark) & is.null(status.cmprsk)) {
if (length(levels(summary(sfit)$strata)) == 0) {
median_time <- summary(sfit1)$table[, "median"][[1]]
if (!is.na(median_time)) {
p <- p + annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") + annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
median_time <- summary(sfit2)$table[, "median"][[1]]
if (!is.na(median_time)) {
p <- p + annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") + annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
} else {
for (i in 1:length(levels(summary(sfit)$strata))) {
median_time <- summary(sfit1)$table[, "median"][[i]]
if (!is.na(median_time)) {
p <- p + annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") + annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
median_time <- summary(sfit2)$table[, "median"][[i]]
if (!is.na(median_time)) {
p <- p + annotate("segment", x = xlims[1], xend = median_time, y = 0.5, yend = 0.5, linewidth = 0.3, linetype = "dashed") + annotate("segment", x = median_time, xend = median_time, y = ylims[1], yend = 0.5, linewidth = 0.3, linetype = "dashed")
}
}
}
}
# Add 95% CI to plot
if (ci == TRUE) {
if (med == FALSE | !is.null(status.cmprsk) | (!is.null(theme) && theme == "nejm")) {
if (all(linecols2 == "black")) {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper), alpha = 0.25, colour = NA)
} else if (is.null(col.pal)) {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper, fill = strata), alpha = 0.25, colour = NA) + scale_fill_brewer(name = ystrataname, palette = linecols)
} else {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper, fill = strata), alpha = 0.25, colour = NA) + scale_fill_manual(name = ystrataname, values = col.pal)
}
} else {
if (all(linecols2 == "black")) {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper), alpha = 0.25, colour = NA)
} else if (is.null(col.pal)) {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper, fill = strata), alpha = 0.25, colour = NA) + scale_fill_brewer(name = ystrataname, palette = linecols, labels = ystratalabs2)
} else {
p <- p + geom_ribbon(data = df, aes(ymin = lower, ymax = upper, fill = strata), alpha = 0.25, colour = NA) + scale_fill_manual(name = ystrataname, values = col.pal, labels = ystratalabs2)
}
}
}
if (!is.null(cut.landmark)) {
p <- p + geom_vline(xintercept = cut.landmark, lty = 2)
}
p1 <- p
if (showpercent == T) {
if (is.null(cut.landmark)) {
y.percent <- summary(sfit, times = xlims[2], extend = T)$surv
if (!is.null(sfit$states)) {
y.percent <- summary(sfit, times = xlims[2], extend = T)$pstate[, col.cmprsk]
}
if (cumhaz == T & is.null(sfit$states)) y.percent <- 1 - y.percent
p <- p + annotate(geom = "text", x = xlims[2], y = y.percent, label = paste0(round(100 * y.percent, 1), "%"), color = "black")
if (!is.null(theme) && theme == "nejm") {
p1 <- p1 + annotate(geom = "text", x = xlims[2], y = y.percent, label = paste0(round(100 * y.percent, 1), "%"), color = "black", size = nejm.infigure.ratiow * 5)
}
} else {
y.percent1 <- summary(sfit, times = cut.landmark, extend = T)$surv
y.percent2 <- summary(sfit2, times = xlims[2], extend = T)$surv
if (!is.null(sfit$states)) {
y.percent1 <- summary(sfit, times = cut.landmark, extend = T)$pstate[, col.cmprsk]
y.percent2 <- summary(sfit2, times = xlims[2], extend = T)$pstate[, col.cmprsk]
}
if (cumhaz == T & is.null(sfit$states)) {
y.percent1 <- 1 - y.percent1
y.percent2 <- 1 - y.percent2
}
p <- p + annotate(geom = "text", x = cut.landmark, y = y.percent1, label = paste0(round(100 * y.percent1, 1), "%"), color = "black") +
annotate(geom = "text", x = xlims[2], y = y.percent2, label = paste0(round(100 * y.percent2, 1), "%"), color = "black")
if (!is.null(theme) && theme == "nejm") {
p1 <- p1 + annotate(geom = "text", x = cut.landmark, y = y.percent1, label = paste0(round(100 * y.percent1, 1), "%"), color = "black", size = nejm.infigure.ratiow * 5) +
annotate(geom = "text", x = xlims[2], y = y.percent2, label = paste0(round(100 * y.percent2, 1), "%"), color = "black", size = nejm.infigure.ratiow * 5)
}
}
}
## Create a blank plot for place-holding
blank.pic <- ggplot(df, aes(time, surv)) +
geom_blank() +
theme_void() + ## Remove gray color
theme(
axis.text.x = element_blank(), axis.text.y = element_blank(),
axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.ticks = element_blank(),
panel.grid.major = element_blank(), panel.border = element_blank()
)
#####################
# p-value placement #
#####################
if (length(levels(summary(sfit)$strata)) == 0) pval <- F
# if(!is.null(cut.landmark)) pval <- F
if (pval == TRUE) {
if (is.null(data)) {
data <- tryCatch(eval(sfit$call$data), error = function(e) e)
if ("error" %in% class(data)) {
stop("'pval' option requires data object. please input 'data' option")
}
}
if (is.null(cut.landmark)) {
if (!is.null(status.cmprsk)) {
ci_obj <- cmprsk::cuminc(ftime = data[[time_var]], fstatus = data[[event_var]], group = data[[group_var]])
pvalue <- ci_obj$Tests[, "pv"][1]
test_type <- "Gray's Test"
} else if (has_weights) {
vv <- data[[group_var]]
unique_groups <- unique(vv)
n_groups <- length(unique_groups)
if (n_groups != 2) {
warning("P-value calculation is only available for binary group variables (2 groups). Number of groups found: ", n_groups)
pval <- FALSE
} else {
if (is.factor(vv) || is.character(vv)) {
vv <- as.character(vv)
unique_groups_sorted <- sort(unique_groups)
vv <- ifelse(vv == unique_groups_sorted[1], 0, 1)
} else if (is.numeric(vv)) {
unique_values_sorted <- sort(unique_groups)
vv <- ifelse(vv == unique_values_sorted[1], 0, 1)
} else {
warning("Unsupported group_var data type for p-value calculation.")
pval <- FALSE
}
tt <- data[[time_var]]
ff <- data[[event_var]]
weight_var <- as.character(sfit$call$weights)
weights <- data[[weight_var]]
adj_lr_result <- adjusted.LR(tt, ff, vv, weights)
pvalue <- adj_lr_result$p.value
test_type <- "Adjusted Log-Rank Test"
}
} else {
sdiff <- survival::survdiff(as.formula(form), data = data)
pvalue <- pchisq(sdiff$chisq, length(sdiff$n) - 1, lower.tail = FALSE)
test_type <- "Log-rank Test"
## cluster option
if (cluster.option == "cluster" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3], " + cluster(", cluster.var, ")", sep = "")
sdiff <- survival::coxph(as.formula(form.new), data = data, model = T, robust = T)
pvalue <- summary(sdiff)$robscore["pvalue"]
test_type <- "Cox (Cluster Robust)"
} else if (cluster.option == "frailty" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3], " + frailty(", cluster.var, ")", sep = "")
sdiff <- survival::coxph(as.formula(form.new), data = data, model = T)
pvalue <- summary(sdiff)$logtest["pvalue"]
test_type <- "Cox (Frailty)"
}
}
pvaltxt <- ifelse(pvalue < 0.001, "p < 0.001", paste("p =", round(pvalue, 3)))
if (pval.testname & !is.null(test_type)) {
pvaltxt <- paste0(pvaltxt, " (", test_type, ")")
}
# MOVE P-VALUE LEGEND HERE BELOW [set x and y]
if (is.null(pval.coord)) {
p <- p + annotate("text", x = (as.integer(max(sfit$time) / 5)), y = 0.1 + ylims[1], label = pvaltxt, size = pval.size)
} else {
p <- p + annotate("text", x = pval.coord[1], y = pval.coord[2], label = pvaltxt, size = pval.size)
}
} else {
if (!is.null(status.cmprsk)) {
ci_obj1 <- cmprsk::cuminc(ftime = data1[[time_var]], fstatus = data1[[event_var]], group = data1[[group_var]])
data2 <- data[data[[var.time]] >= cut.landmark, ]
data2[[time_var]] <- data2[[time_var]] - cut.landmark
ci_obj2 <- cmprsk::cuminc(ftime = data2[[time_var]], fstatus = data2[[event_var]], group = data2[[group_var]])
pvalue1 <- ci_obj1$Tests[, "pv"][1]
pvalue2 <- ci_obj2$Tests[, "pv"][1]
pvalue <- c(pvalue1, pvalue2)
test_type <- "Gray's Test"
} else if (has_weights) {
compute_pval_weighted <- function(sub_data, sfit, group_var, time_var, event_var) {
vv_sub <- sub_data[[group_var]]
unique_groups_sub <- unique(vv_sub)
n_groups_sub <- length(unique_groups_sub)
if (n_groups_sub != 2) {
warning("P-value calculation is only available for binary group variables (2 groups) in landmark subset. Number of groups found: ", n_groups_sub)
return(NA)
} else {
if (is.factor(vv_sub) || is.character(vv_sub)) {
vv_sub <- as.character(vv_sub)
unique_groups_sorted_sub <- sort(unique_groups_sub)
vv_sub <- ifelse(vv_sub == unique_groups_sorted_sub[1], 0, 1)
} else if (is.numeric(vv_sub)) {
unique_values_sorted_sub <- sort(unique_groups_sub)
vv_sub <- ifelse(vv_sub == unique_values_sorted_sub[1], 0, 1)
} else {
warning("Unsupported group_var data type for p-value calculation in landmark subset.")
return(NA)
}
tt_sub <- sub_data[[time_var]]
ff_sub <- sub_data[[event_var]]
weight_var_sub <- as.character(sfit$call$weights)
weights_sub <- sub_data[[weight_var_sub]]
# Adjusted Log-Rank Test
adj_lr_result_sub <- adjusted.LR(tt_sub, ff_sub, vv_sub, weights_sub)
return(adj_lr_result_sub$p.value)
}
}
data2 <- data[data[[var.time]] >= cut.landmark, ]
data2[[time_var]] <- data2[[time_var]] - cut.landmark
pvalue_1 <- compute_pval_weighted(data1, sfit, group_var, time_var, event_var)
pvalue_2 <- compute_pval_weighted(data2, sfit, group_var, time_var, event_var)
pvalue <- c(pvalue_1, pvalue_2)
test_type <- "Adjusted Log-Rank Test"
} else {
sdiff1 <- survival::survdiff(as.formula(form), data1)
sdiff2 <- survival::survdiff(as.formula(form), data[data[[var.time]] >= cut.landmark, ])
pvalue <- sapply(list(sdiff1, sdiff2), function(x) {
pchisq(x$chisq, length(x$n) - 1, lower.tail = FALSE)
})
test_type <- "Log-rank Test"
## cluster option
if (cluster.option == "cluster" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3], sep = "")
sdiff1 <- survival::coxph(as.formula(form.new), data = data1, model = T, cluster = get(cluster.var))
sdiff2 <- survival::coxph(as.formula(form.new), data = data[data[[var.time]] >= cut.landmark, ], model = T, cluster = get(cluster.var))
pvalue <- sapply(list(sdiff1, sdiff2), function(x) {
summary(x)$robscore["pvalue"]
})
test_type <- "Cox (Cluster Robust)"
} else if (cluster.option == "frailty" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3], " + frailty(", cluster.var, ")", sep = "")
sdiff1 <- survival::coxph(as.formula(form.new), data = data1, model = T)
sdiff2 <- survival::coxph(as.formula(form.new), data = data[data[[var.time]] >= cut.landmark, ], model = T)
pvalue <- sapply(list(sdiff1, sdiff2), function(x) {
summary(x)$logtest["pvalue"]
})
test_type <- "Cox (Frailty)"
}
}
pvaltxt <- ifelse(pvalue < 0.001, "p < 0.001", paste("p =", round(pvalue, 3)))
if (pval.testname & !is.null(test_type)) {
pvaltxt <- paste0(pvaltxt, " (", test_type, ")")
}
if (is.null(pval.coord)) {
p <- p + annotate("text", x = c(as.integer(max(sfit$time) / 10), as.integer(max(sfit$time) / 10) + cut.landmark), y = 0.1 + ylims[1], label = pvaltxt, size = pval.size)
} else {
p <- p + annotate("text", x = c(pval.coord[1], pval.coord[1] + cut.landmark), y = pval.coord[2], label = pvaltxt, size = pval.size)
}
}
}
##########################
# Hazard Ratio placement #
##########################
if (hr == TRUE) {
if (is.null(data)) {
data <- tryCatch(eval(sfit$call$data), error = function(e) e)
if ("error" %in% class(data)) {
stop("'HR' option requires data object. Please input 'data' option")
}
}
# binary check.
group_values <- data[[group_var]]
unique_groups <- unique(group_values)
n_groups <- length(unique_groups)
if (n_groups != 2) {
stop("Currently, HR calculation is only available for binary group variables. Number of groups found: ", n_groups)
}
# w/o Landmark
if (is.null(cut.landmark)) {
# 1) competing risk: Fine-Gray
if (!is.null(status.cmprsk)) {
fg_model <- cmprsk::crr(ftime = data[[time_var]],
fstatus = data[[event_var]],
cov1 = as.matrix(data[[group_var]]))
HR_value <- exp(fg_model$coef[1])
HR_ci_lower <- exp(fg_model$coef[1] - 1.96 * sqrt(fg_model$var[1,1]))
HR_ci_upper <- exp(fg_model$coef[1] + 1.96 * sqrt(fg_model$var[1,1]))
test_type <- "Fine-Gray Model"
pval <- 2 * (1 - pnorm(abs(fg_model$coef[1] / sqrt(fg_model$var[1,1]))))
# 2) weights: Weighted cox
} else if (has_weights){
weight_var <- as.character(sfit$call$weights)
cox_model <- survival::coxph(as.formula(form), data = data, weights = data[[weight_var]])
HR_value <- summary(cox_model)$coefficients[,"exp(coef)"][1]
HR_ci_lower <- summary(cox_model)$conf.int[1, "lower .95"]
HR_ci_upper <- summary(cox_model)$conf.int[1, "upper .95"]
pval <- summary(cox_model)$coefficients[, "Pr(>|z|)"][1]
test_type <- "Weighted Cox Model"
# 3) else, Cox__ w/ cluster(3-1), w/o(3-2)
} else {
cox_model <- survival::coxph(as.formula(form), data = data)
HR_value <- summary(cox_model)$coefficients[,"exp(coef)"][1]
HR_ci_lower <- summary(cox_model)$conf.int[1, "lower .95"]
HR_ci_upper <- summary(cox_model)$conf.int[1, "upper .95"]
pval <- summary(cox_model)$coefficients[, "Pr(>|z|)"][1]
test_type <- "Cox Model"
# w/ cluster(3-1)
if (cluster.option == "cluster" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3],
" + cluster(", cluster.var, ")", sep = "")
cox_model <- survival::coxph(as.formula(form.new), data = data,
model = TRUE, robust = TRUE)
HR_value <- summary(cox_model)$coefficients[,"exp(coef)"][1]
HR_ci_lower <- summary(cox_model)$conf.int[1, "lower .95"]
HR_ci_upper <- summary(cox_model)$conf.int[1, "upper .95"]
test_type <- "Cox (Cluster Robust)"
pval <- summary(cox_model)$coefficients[, "Pr(>|z|)"][1]
# w/o cluster (3-2)
} else if (cluster.option == "frailty" & !is.null(cluster.var)) {
form.old <- as.character(form)
form.new <- paste(form.old[2], form.old[1], " + ", form.old[3],
" + frailty(", cluster.var, ")", sep = "")
cox_model <- survival::coxph(as.formula(form.new), data = data, model = TRUE)
HR_value <- summary(cox_model)$coefficients[,"exp(coef)"][1]
HR_ci_lower <- summary(cox_model)$conf.int[1, "lower .95"]
HR_ci_upper <- summary(cox_model)$conf.int[1, "upper .95"]
test_type <- "Cox (Frailty)"
pval <- summary(cox_model)$coefficients[, "Pr(>|z|)"][1]
}
}
# HR text
hr_txt <- ifelse(HR_value < 0.001, "HR < 0.001", paste("HR =", round(HR_value, 2)))
hr_txt <- paste0(hr_txt, " (95% CI: ", round(HR_ci_lower, 2), " ", round(HR_ci_upper, 2), "; P = ", round(pval, 3), ")")
if ((hr.testname == T) & !is.null(test_type)) {
hr_txt <- paste0(hr_txt, " (", test_type, ")")
}
if (is.null(hr.coord)) {
p <- p + annotate("text", x = (as.integer(max(sfit$time) / 5)),
y = 0.2 + ylims[1], label = hr_txt, size = hr.size)
} else {
p <- p + annotate("text", x = hr.coord[1], y = hr.coord[2],
label = hr_txt, size = hr.size)
}
# w Landmark(2 HRs)
} else {
data1 <- data[data[[var.time]] < cut.landmark, ]
cox_model1 <- survival::coxph(as.formula(form), data = data1)
HR1 <- summary(cox_model1)$coefficients[,"exp(coef)"][1]
HR1_ci_lower <- summary(cox_model1)$conf.int[1, "lower .95"]
HR1_ci_upper <- summary(cox_model1)$conf.int[1, "upper .95"]
pval1 <- summary(cox_model1)$coefficients[, "Pr(>|z|)"][1]
data2 <- data[data[[var.time]] >= cut.landmark, ]
data2[[time_var]] <- data2[[time_var]] - cut.landmark
cox_model2 <- survival::coxph(as.formula(form), data = data2)
HR2 <- summary(cox_model2)$coefficients[,"exp(coef)"][1]
HR2_ci_lower <- summary(cox_model2)$conf.int[1, "lower .95"]
HR2_ci_upper <- summary(cox_model2)$conf.int[1, "upper .95"]
pval2 <- summary(cox_model2)$coefficients[, "Pr(>|z|)"][1]
test_type <- "Cox Model"
hr_txt <- paste0("HR1 = ", round(HR1, 2),
" (95% CI: ", round(HR1_ci_lower, 2)," ", round(HR1_ci_upper, 2), ");",
" P = ", round(pval1, 3),
"\n",
"HR2 = ", round(HR2, 2),
" (95% CI: ", round(HR2_ci_lower, 2)," ", round(HR2_ci_upper, 2), ");",
" P = ", round(pval2, 3)
)
if ((hr.testname==T) & !is.null(test_type)) {
hr_txt <- paste0(hr_txt, "\n(", test_type, ")")
}
if (is.null(hr.coord)) {
p <- p + annotate("text",
x = as.integer(max(sfit$time) / 10),
y = 0.2 + ylims[1], label = hr_txt, size = hr.size)
} else {
p <- p + annotate("text",
x = hr.coord[1],
y = hr.coord[2], label = hr_txt, size = hr.size)
}
}
}
###################################################
# Create table graphic to include at-risk numbers #
###################################################
n.risk <- NULL
if (length(levels(summary(sfit)$strata)) == 0) {
Factor <- factor(rep("All", length(subs3)))
} else {
Factor <- factor(summary(sfit, times = times, extend = TRUE)$strata[subs3])
}
if (table == TRUE) {
sfit_unweighted <- survfit(as.formula(form), data = data)
summary_unweighted <- summary(sfit_unweighted, times = times, extend = TRUE)
risk.data <- data.frame(
strata = Factor,
time = summary_unweighted$time[subs3],
n.risk = summary_unweighted$n.risk[subs3]
)
if (table.censor) {
risk.data <- data.frame(
strata = Factor,
time = summary_unweighted$time[subs3],
n.risk = summary_unweighted$n.risk[subs3],
n.censor = summary_unweighted$n.censor[subs3]
)
risk.data$n.risk <- paste0(risk.data$n.risk, " (", risk.data$n.censor, ")")
risk.data$n.censor <- NULL
}
risk.data$strata <- factor(risk.data$strata, levels = rev(levels(risk.data$strata)))
data.table <- ggplot(risk.data, aes(x = time, y = strata, label = format(n.risk, nsmall = 0))) +
geom_text(size = 3.5) +
theme_bw() +
scale_y_discrete(
breaks = as.character(levels(risk.data$strata)),
labels = rev(ystratalabs)
) +
scale_x_continuous(label.nrisk, limits = xlims) +
theme(
axis.title.x = element_text(size = size.label.nrisk, vjust = 1),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.border = element_blank(), axis.text.x = element_blank(),
axis.ticks = element_blank(), axis.text.y = element_text(face = "bold", hjust = 1)
)
data.table <- data.table +
guides(colour = "none", linetype = "none") + xlab(NULL) + ylab(NULL)
# ADJUST POSITION OF TABLE FOR AT RISK
data.table <- data.table +
theme(plot.margin = unit(c(-1.5, 1, 0.1, ifelse(m < 10, 3.1, 4.3) - 0.38 * m), "lines"))
}
#######################
# Plotting the graphs #
#######################
if (!is.null(theme) && theme == "nejm") {
p2 <- p1 + coord_cartesian(ylim = nejm.infigure.ylim) + theme(
axis.title.x = element_blank(), axis.title.y = element_blank(),
axis.text = element_text(size = 10 * nejm.infigure.ratiow),
) + guides(colour = "none", linetype = "none") + scale_y_continuous(limits = nejm.infigure.ylim, breaks = waiver(), labels = scale_labels)
p <- p + patchwork::inset_element(p2, 1 - nejm.infigure.ratiow, 1 - nejm.infigure.ratioh, 1, 1, align_to = "panel")
}
if (table == TRUE) {
ggpubr::ggarrange(p, blank.pic, data.table,
nrow = 3,
# align = "v",
heights = c(2, .1, .25)
)
} else {
p
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.