Nothing
#' @title FilePsInput: Shiny module UI for file upload for propensity score matching.
#' @description Shiny module UI for file upload for propensity score matching.
#' @param id id
#' @param label label, Default: 'csv/xlsx/sav/sas7bdat file'
#' @return Shiny module UI for file upload for propensity score matching.
#' @details Shiny module UI for file upload for propensity score matching.
#' @examples
#' library(shiny)
#' library(DT)
#' library(data.table)
#' library(readxl)
#' library(jstable)
#' ui <- fluidPage(
#' sidebarLayout(
#' sidebarPanel(
#' FilePsInput("datafile")
#' ),
#' mainPanel(
#' tabsetPanel(
#' type = "pills",
#' tabPanel("Data", DTOutput("data")),
#' tabPanel("Matching data", DTOutput("matdata")),
#' tabPanel("Label", DTOutput("data_label", width = "100%"))
#' )
#' )
#' )
#' )
#'
#' server <- function(input, output, session) {
#' mat.info <- callModule(FilePs, "datafile")
#'
#' output$data <- renderDT({
#' mat.info()$data
#' })
#'
#' output$matdata <- renderDT({
#' mat.info()$matdata
#' })
#'
#' output$label <- renderDT({
#' mat.info()$label
#' })
#' }
#' @rdname FilePsInput
#' @export
#' @import shiny
FilePsInput <- function(id, label = "Upload data (csv/xlsx/sav/sas7bdat/dta)") {
# Create a namespace function using the provided id
ns <- NS(id)
tagList(
fileInput(ns("file"), label),
uiOutput(ns("factor")),
uiOutput(ns("binary_check")),
uiOutput(ns("binary_var")),
uiOutput(ns("binary_val")),
uiOutput(ns("ref_check")),
uiOutput(ns("ref_var")),
uiOutput(ns("ref_val")),
uiOutput(ns("subset_check")),
uiOutput(ns("subset_var")),
uiOutput(ns("subset_val")),
uiOutput(ns("group_ps")),
uiOutput(ns("indep_ps")),
uiOutput(ns("pcut")),
uiOutput(ns("caliperps")),
uiOutput(ns("ratio"))
)
}
#' @title FilePs: Shiny module Server for file upload for propensity score matching.
#' @description Shiny module Server for file upload for propensity score matching.
#' @param input input
#' @param output output
#' @param session session
#' @param nfactor.limit nfactor limit to include, Default: 20
#' @return Shiny module Server for file upload for propensity score matching.
#' @details Shiny module Server for file upload for propensity score matching.
#' @examples
#' library(shiny)
#' library(DT)
#' library(data.table)
#' library(readxl)
#' library(jstable)
#' ui <- fluidPage(
#' sidebarLayout(
#' sidebarPanel(
#' FilePsInput("datafile")
#' ),
#' mainPanel(
#' tabsetPanel(
#' type = "pills",
#' tabPanel("Data", DTOutput("data")),
#' tabPanel("Matching data", DTOutput("matdata")),
#' tabPanel("Label", DTOutput("data_label", width = "100%"))
#' )
#' )
#' )
#' )
#'
#' server <- function(input, output, session) {
#' mat.info <- callModule(FilePs, "datafile")
#'
#' output$data <- renderDT({
#' mat.info()$data
#' })
#'
#' output$matdata <- renderDT({
#' mat.info()$matdata
#' })
#'
#' output$label <- renderDT({
#' mat.info()$label
#' })
#' }
#' @rdname FilePs
#' @export
#' @import shiny
#' @importFrom data.table fread data.table .SD :=
#' @importFrom readxl read_excel
#' @importFrom readr guess_encoding
#' @importFrom utils read.csv
#' @importFrom jstable mk.lev
#' @importFrom haven read_sav read_sas
#' @importFrom MatchIt matchit match.data
FilePs <- function(input, output, session, nfactor.limit = 20) {
## To remove NOTE.
ID.pscal2828 <- BinaryGroupRandom <- variable <- val_label <- NULL
# The selected file, if any
userFile <- eventReactive(input$file, {
# If no file is selected, don't do anything
# validate(need(input$file, message = FALSE))
input$file
})
mklist <- function(varlist, vars) {
lapply(
varlist,
function(x) {
inter <- intersect(x, vars)
if (length(inter) == 1) {
inter <- c(inter, "")
}
return(inter)
}
)
}
data.info <- eventReactive(input$file, {
validate(need((grepl("csv", userFile()$name) == T) | (grepl("xlsx", userFile()$name) == T) | (grepl("sav", userFile()$name) == T) | (grepl("sas7bdat", userFile()$name) == T), message = "Please upload csv/xlsx/sav/sas7bdat file"))
if (grepl("csv", userFile()$name) == T) {
out <- data.table::fread(userFile()$datapath, check.names = F, integer64 = "double")
if (readr::guess_encoding(userFile()$datapath)[1, 1] == "EUC-KR") {
out <- data.table::data.table(utils::read.csv(userFile()$datapath, check.names = F, fileEncoding = "EUC-KR"))
}
} else if (grepl("xlsx", userFile()$name) == T) {
out <- data.table::data.table(readxl::read_excel(userFile()$datapath), check.names = F, integer64 = "double")
} else if (grepl("sav", userFile()$name) == T) {
out <- data.table::data.table(tryCatch(haven::read_sav(userFile()$datapath), error = function(e) {
return(haven::read_sav(userFile()$datapath, encoding = "latin1"))
}), check.names = F)
# out = data.table::data.table(haven::read_sav(userFile()$datapath, encoding = "latin1"), check.names = F, integer64 = "double")
} else if (grepl("sas7bdat", userFile()$name) == T) {
out <- data.table::data.table(tryCatch(haven::read_sas(userFile()$datapath), error = function(e) {
return(haven::read_sas(userFile()$datapath, encoding = "latin1"))
}), check.names = F)
# out = data.table::data.table(haven::read_sas(userFile()$datapath), check.names = F, integer64 = "double")
} else if (grepl("dta", userFile()$name) == T) {
out <- data.table::data.table(tryCatch(haven::read_dta(userFile()$datapath), error = function(e) {
return(haven::read_dta(userFile()$datapath, encoding = "latin1"))
}), check.names = F)
# out = data.table::data.table(haven::read_dta(userFile()$datapath), check.names = F, integer64 = "double")
} else {
stop("Not supported format.")
}
out.old <- out
name.old <- names(out.old)
out <- data.table::data.table(out, check.names = T)
name.new <- names(out)
ref <- list(name.old = name.old, name.new = name.new)
naCol <- names(out)[colSums(is.na(out)) > 0]
# out <- out[, .SD, .SDcols = -naCol]
data_varStruct <- list(variable = names(out))
factor_vars <- names(out)[out[, lapply(.SD, class) %in% c("factor", "character")]]
if (!is.null(factor_vars) & length(factor_vars) > 0) {
out[, (factor_vars) := lapply(.SD, as.factor), .SDcols = factor_vars]
}
conti_vars <- setdiff(names(out), factor_vars)
nclass <- unlist(out[, lapply(.SD, function(x) {
length(unique(x))
}), .SDcols = conti_vars])
factor_adds_list <- mklist(data_varStruct, names(nclass)[(nclass <= nfactor.limit) & (nclass < nrow(out))])
# except_vars <- names(nclass)[ nclass== 1 | nclass >= nfactor.limit]
except_vars <- names(nclass)[nclass == 1]
add_vars <- names(nclass)[nclass >= 1 & nclass <= 5]
# factor_vars_ini <- union(factor_vars, add_vars)
naomit <- ifelse(length(naCol) == 0, "Data has <B>no</B> missing values.", paste("Column <B>", paste(naCol, collapse = ", "), "</B> contain missing values.", sep = ""))
return(list(
data = out, data_varStruct = data_varStruct, factor_original = factor_vars,
conti_original = conti_vars, factor_adds_list = factor_adds_list,
factor_adds = add_vars, naCol = naCol, except_vars = except_vars, ref = ref, naomit = naomit, data.old = out.old
))
})
# naomit <- eventReactive(data.info(), {
# req(data.info())
# if (length(data.info()$naCol) == 0) {
# return("Data has <B>no</B> missing values.")
# } else{
# txt_miss <- paste(data.info()$naCol, collapse = ", ")
# return(paste("Column <B>", txt_miss, "</B> are(is) excluded due to missing value.", sep = ""))
# }
# })
output$pcut <- renderUI({
if (is.null(input$file)) {
return(NULL)
}
radioButtons(session$ns("pcut_ps"),
label = "Default p-value cut for ps calculation",
choices = c("No", 0.05, 0.1, 0.2),
selected = "No", inline = T
)
})
output$ratio <- renderUI({
if (is.null(input$file)) {
return(NULL)
}
radioButtons(session$ns("ratio_ps"),
label = "Case:control ratio",
choices = c("1:1" = 1, "1:2" = 2, "1:3" = 3, "1:4" = 4),
selected = 1, inline = T
)
})
observeEvent(data.info(), {
output$factor <- renderUI({
selectInput(session$ns("factor_vname"),
label = "Additional categorical variables",
choices = data.info()$factor_adds_list, multiple = T,
selected = data.info()$factor_adds
)
})
})
observeEvent(c(data.info()$factor_original, input$factor_vname), {
output$binary_check <- renderUI({
checkboxInput(session$ns("check_binary"), "Make binary variables")
})
output$ref_check <- renderUI({
checkboxInput(session$ns("check_ref"), "Change reference of categorical variables")
})
output$subset_check <- renderUI({
checkboxInput(session$ns("check_subset"), "Subset data")
})
})
observeEvent(input$check_binary, {
var.conti <- setdiff(names(data.info()$data), c(data.info()$factor_original, input$factor_vname))
output$binary_var <- renderUI({
req(input$check_binary == T)
selectInput(session$ns("var_binary"), "Variables to dichotomize",
choices = var.conti, multiple = T,
selected = var.conti[1]
)
})
output$binary_val <- renderUI({
req(input$check_binary == T)
req(length(input$var_binary) > 0)
outUI <- tagList()
for (v in seq_along(input$var_binary)) {
med <- stats::quantile(data.info()$data[[input$var_binary[[v]]]], c(0.05, 0.5, 0.95), na.rm = T)
outUI[[v]] <- splitLayout(
cellWidths = c("25%", "75%"),
selectInput(session$ns(paste0("con_binary", v)), paste0("Define reference:"),
choices = c("\u2264", "\u2265", "\u003c", "\u003e"), selected = "\u2264"
),
numericInput(session$ns(paste0("cut_binary", v)), input$var_binary[[v]],
value = med[2], min = med[1], max = med[3]
)
)
}
outUI
})
})
observeEvent(input$check_ref, {
var.factor <- c(data.info()$factor_original, input$factor_vname)
output$ref_var <- renderUI({
req(input$check_ref == T)
selectInput(session$ns("var_ref"), "Variables to change reference",
choices = var.factor, multiple = T,
selected = var.factor[1]
)
})
output$ref_val <- renderUI({
req(input$check_ref == T)
req(length(input$var_ref) > 0)
outUI <- tagList()
for (v in seq_along(input$var_ref)) {
outUI[[v]] <- selectInput(session$ns(paste0("con_ref", v)), paste0("Reference: ", input$var_ref[[v]]),
choices = levels(factor(data.info()$data[[input$var_ref[[v]]]])), selected = levels(factor(data.info()$data[[input$var_ref[[v]]]]))[2]
)
}
outUI
})
})
observeEvent(input$check_subset, {
output$subset_var <- renderUI({
req(input$check_subset == T)
# factor_subset <- c(data.info()$factor_original, input$factor_vname)
# validate(
# need(length(factor_subset) > 0 , "No factor variable for subsetting")
# )
tagList(
selectInput(session$ns("var_subset"), "Subset variables",
choices = names(data.info()$data), multiple = T,
selected = names(data.info()$data)[1]
)
)
})
output$subset_val <- renderUI({
req(input$check_subset == T)
req(length(input$var_subset) > 0)
var.factor <- c(data.info()$factor_original, input$factor_vname)
outUI <- tagList()
for (v in seq_along(input$var_subset)) {
if (input$var_subset[[v]] %in% var.factor) {
varlevel <- levels(as.factor(data.info()$data[[input$var_subset[[v]]]]))
outUI[[v]] <- selectInput(session$ns(paste0("val_subset", v)), paste0("Subset value: ", input$var_subset[[v]]),
choices = varlevel, multiple = T,
selected = varlevel[1]
)
} else {
val <- stats::quantile(data.info()$data[[input$var_subset[[v]]]], na.rm = T)
outUI[[v]] <- sliderInput(session$ns(paste0("val_subset", v)), paste0("Subset range: ", input$var_subset[[v]]),
min = val[1], max = val[5],
value = c(val[2], val[4])
)
}
}
outUI
})
})
# We can run observers in here if we want to
observe({
msg <- sprintf("File %s was uploaded", userFile()$name)
cat(msg, "\n")
})
data <- reactive({
req(input$factor_vname)
out <- data.table::data.table(data.info()$data)
out[, (data.info()$conti_original) := lapply(.SD, function(x) {
as.numeric(as.vector(x))
}), .SDcols = data.info()$conti_original]
if (length(input$factor_vname) > 0) {
out[, (input$factor_vname) := lapply(.SD, as.factor), .SDcols = input$factor_vname]
}
ref <- data.info()$ref
out.label <- mk.lev(out)
if (tools::file_ext(input$file$name) == "sav") {
out.label <- mk.lev2(data.info()$data.old, out.label)
}
if (!is.null(input$check_binary)) {
if (input$check_binary) {
validate(
need(length(input$var_binary) > 0, "No variables to dichotomize")
)
sym.ineq <- c("\u2264", "\u2265", "\u003c", "\u003e")
names(sym.ineq) <- sym.ineq[4:1]
sym.ineq2 <- c("le", "ge", "l", "g")
names(sym.ineq2) <- sym.ineq
for (v in seq_along(input$var_binary)) {
req(input[[paste0("con_binary", v)]])
req(input[[paste0("cut_binary", v)]])
if (input[[paste0("con_binary", v)]] == "\u2264") {
out[, BinaryGroupRandom := factor(1 - as.integer(get(input$var_binary[[v]]) <= input[[paste0("cut_binary", v)]]))]
} else if (input[[paste0("con_binary", v)]] == "\u2265") {
out[, BinaryGroupRandom := factor(1 - as.integer(get(input$var_binary[[v]]) >= input[[paste0("cut_binary", v)]]))]
} else if (input[[paste0("con_binary", v)]] == "\u003c") {
out[, BinaryGroupRandom := factor(1 - as.integer(get(input$var_binary[[v]]) < input[[paste0("cut_binary", v)]]))]
} else {
out[, BinaryGroupRandom := factor(1 - as.integer(get(input$var_binary[[v]]) > input[[paste0("cut_binary", v)]]))]
}
cn.new <- paste0(input$var_binary[[v]], "_group_", sym.ineq2[input[[paste0("con_binary", v)]]], input[[paste0("cut_binary", v)]])
data.table::setnames(out, "BinaryGroupRandom", cn.new)
label.binary <- mk.lev(out[, .SD, .SDcols = cn.new])
label.binary[, var_label := paste0(input$var_binary[[v]], " _group")]
label.binary[, val_label := paste0(c(input[[paste0("con_binary", v)]], sym.ineq[input[[paste0("con_binary", v)]]]), " ", input[[paste0("cut_binary", v)]])]
out.label <- rbind(out.label, label.binary)
}
}
}
if (!is.null(input$check_ref)) {
if (input$check_ref) {
validate(
need(length(input$var_ref) > 0, "No variables to change reference")
)
for (v in seq_along(input$var_ref)) {
req(input[[paste0("con_ref", v)]])
out[[input$var_ref[[v]]]] <- stats::relevel(out[[input$var_ref[[v]]]], ref = input[[paste0("con_ref", v)]])
out.label[variable == input$var_ref[[v]], ":="(level = levels(out[[input$var_ref[[v]]]]), val_label = levels(out[[input$var_ref[[v]]]]))]
}
}
}
if (!is.null(input$check_subset)) {
if (input$check_subset) {
validate(
need(length(input$var_subset) > 0, "No variables for subsetting"),
need(all(sapply(1:length(input$var_subset), function(x) {
length(input[[paste0("val_subset", x)]])
})), "No value for subsetting")
)
var.factor <- c(data.info()$factor_original, input$factor_vname)
# var.conti <- setdiff(data()$conti_original, input$factor_vname)
for (v in seq_along(input$var_subset)) {
if (input$var_subset[[v]] %in% var.factor) {
out <- out[get(input$var_subset[[v]]) %in% input[[paste0("val_subset", v)]]]
# var.factor <- c(data()$factor_original, input$factor_vname)
out[, (var.factor) := lapply(.SD, factor), .SDcols = var.factor]
out.label2 <- mk.lev(out)[, c("variable", "level")]
data.table::setkey(out.label, "variable", "level")
data.table::setkey(out.label2, "variable", "level")
out.label <- out.label[out.label2]
} else {
out <- out[get(input$var_subset[[v]]) >= input[[paste0("val_subset", v)]][1] & get(input$var_subset[[v]]) <= input[[paste0("val_subset", v)]][2]]
# var.factor <- c(data()$factor_original, input$factor_vname)
out[, (var.factor) := lapply(.SD, factor), .SDcols = var.factor]
out.label2 <- mk.lev(out)[, c("variable", "level")]
data.table::setkey(out.label, "variable", "level")
data.table::setkey(out.label2, "variable", "level")
out.label <- out.label[out.label2]
}
}
}
}
if (tools::file_ext(input$file$name) != "sav") {
for (vn in ref[["name.new"]]) {
w <- which(ref[["name.new"]] == vn)
out.label[variable == vn, var_label := ref[["name.old"]][w]]
}
}
out.label <- rbind(out.label, data.table(variable = "pscore", class = "numeric", level = NA, var_label = "pscore", val_label = NA))
return(list(data = out, label = out.label, data_varStruct = list(variable = names(out)), except_vars = data.info()$except_vars))
})
observeEvent(data(), {
output$group_ps <- renderUI({
# req(data())
factor_vars <- names(data()$data)[data()$data[, lapply(.SD, class) %in% c("factor", "character")]]
validate(
need(!is.null(factor_vars) & length(factor_vars) > 0, "No categorical variables in data")
)
class01_factor <- unlist(data()$data[, lapply(.SD, function(x) {
identical(levels(x), c("0", "1"))
}), .SDcols = factor_vars])
# nclass_factor <- unlist(data()[, lapply(.SD, function(x){length(unique(x))}), .SDcols = factor_vars])
# factor_2vars <- names(nclass_factor)[nclass_factor == 2]
validate(
need(!is.null(class01_factor), "No categorical variables coded as 0, 1 in data")
)
factor_01vars <- factor_vars[class01_factor]
factor_01vars_case_small <- factor_01vars[unlist(sapply(factor_01vars, function(x) {
diff(table(data()$data[[x]])) <= 0
}))]
validate(
need(length(factor_01vars_case_small) > 0, "No candidate group variable for PS calculation")
)
selectInput(session$ns("group_pscal"),
label = "Group variable for PS calculation (0, 1 coding)",
choices = mklist(data()$data_varStruct, factor_01vars_case_small), multiple = F,
selected = factor_01vars_case_small[1]
)
})
output$indep_ps <- renderUI({
req(!is.null(input$group_pscal))
validate(
need(length(input$group_pscal) != 0, "No group variables in data")
)
vars <- setdiff(setdiff(names(data()$data), data()$except_vars), c(input$var_subset, input$group_pscal))
varsIni <- 1
if (input$pcut_ps != "No") {
varsIni <- sapply(
vars,
function(v) {
forms <- as.formula(paste(input$group_pscal, "~", v))
coef <- tryCatch(summary(glm(forms, data = data()$data, family = binomial))$coefficients, error = function(e) {
return(NULL)
})
sigOK <- !all(coef[-1, 4] > as.numeric(input$pcut_ps))
return(sigOK)
}
)
}
tagList(
selectInput(session$ns("indep_pscal"),
label = "Independent variables for PS calculation",
choices = mklist(data()$data_varStruct, vars), multiple = T,
selected = vars[varsIni]
)
)
})
output$caliperps <- renderUI({
sliderInput(session$ns("caliper"), "Caliper (0: no)", value = 0, min = 0, max = 1)
})
})
mat.info <- eventReactive(c(input$indep_pscal, input$group_pscal, input$caliper, input$ratio_ps, data()), {
req(input$indep_pscal)
if (is.null(input$group_pscal) | is.null(input$indep_pscal)) {
return(NULL)
}
data <- data.table(data()$data)
data$ID.pscal2828 <- 1:nrow(data)
case.naomit <- which(complete.cases(data[, .SD, .SDcols = c(input$group_pscal, input$indep_pscal)]))
data.naomit <- data[case.naomit]
data.na <- data[-case.naomit]
data.na$pscore <- NA
data.na$iptw <- NA
caliper <- NULL
if (input$caliper > 0) {
caliper <- input$caliper
}
forms <- as.formula(paste(input$group_pscal, " ~ ", paste(input$indep_pscal, collapse = "+"), sep = ""))
m.out <- MatchIt::matchit(forms, data = data.naomit[, .SD, .SDcols = c("ID.pscal2828", input$group_pscal, input$indep_pscal)], caliper = caliper, ratio = as.integer(input$ratio_ps))
pscore <- m.out$distance
iptw <- ifelse(m.out$treat == levels(factor(m.out$treat))[2], 1 / pscore, 1 / (1 - pscore))
wdata <- rbind(data.na, cbind(data.naomit, pscore, iptw))
return(list(data = wdata, matdata = data[ID.pscal2828 %in% match.data(m.out)$ID.pscal2828], data.label = data()$label, naomit = data.info()$naomit, group_var = input$group_pscal))
})
# Return the reactive that yields the data frame
return(mat.info)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.