tests/testthat/test-keyATMCovPG.R

if (compareVersion(paste0(version$major, ".", version$minor), "3.6") < 0) {
  skip("Randomization algorithm has changed from R 3.6")
}


# Read Data
data(keyATM_data_bills)
bills_dfm <- keyATM_data_bills$doc_dfm
bills_keywords <- keyATM_data_bills$keywords
bills_cov <- keyATM_data_bills$cov
bills_time_index <- keyATM_data_bills$time_index
keyATM_docs <- keyATM_read(bills_dfm)


# Covariate
cov <- keyATM(
  docs = keyATM_docs,
  no_keyword_topics = 3,
  keywords = bills_keywords,
  model = "covariates",
  model_settings = list(
    covariates_data = bills_cov,
    standardize = "all",
    covariates_formula = ~.,
    covariates_model = "PG"
  ),
  options = list(
    seed = 250,
    store_theta = TRUE,
    iterations = 20,
    store_pi = 1,
    thinning = 5,
    verbose = FALSE
  ),
  keep = c("Z", "S")
)

test_that("keyATM covariate", {
  expect_output(covariates_info(cov))
  expect_type(covariates_get(cov), "double")
  expect_error(covariates_info(base))

  skip_on_os("linux")
  skip_on_cran()
  expect_equal(cov$model_fit$Perplexity[3], 1986.366, tolerance = 0.001)
  expect_equal(top_words(cov)[1, 1], "education [\U2713]")
  expect_equal(top_words(cov)[3, 3], "care")
  expect_equal(cov$pi$Proportion[2], 5.056661, tolerance = 0.00001)
})


# Heterogeneity
test_that("keyATM Heterogeneity Doc-Topic", {
  strata_topic <- by_strata_DocTopic(
    cov,
    by_var = "RepParty",
    labels = c("Dem", "Rep"),
    parallel = FALSE,
    posterior_mean = FALSE
  )

  skip_on_os("linux")
  skip_on_cran()
  expect_equal(
    summary(strata_topic, method = "eti")[[2]]$Lower[2],
    0.06559216,
    tolerance = 0.00001
  )

  p <- plot(
    strata_topic,
    show_topic = c(1, 2, 3, 4),
    by = "covariate",
    method = "eti"
  )
  expect_s3_class(p, "keyATM_fig")

  expect_message(
    suppressWarnings(save_fig(p, paste0(tempdir(), "/test.pdf"))),
    "Saving 7 x 7 in image"
  )
})


test_that("keyATM Heterogeneity Doc-Topic, use posterior_mean", {
  strata_topic <- by_strata_DocTopic(
    cov,
    by_var = "RepParty",
    labels = c("Dem", "Rep"),
    parallel = FALSE,
    posterior_mean = TRUE
  )

  skip_on_os("linux")
  skip_on_cran()
  expect_equal(
    summary(strata_topic, method = "eti")[[2]]$Lower[2],
    0.1385868,
    tolerance = 0.00001
  )

  p <- plot(
    strata_topic,
    show_topic = c(1, 2, 3, 4),
    by = "covariate",
    method = "eti"
  )
  expect_s3_class(p, "keyATM_fig")

  expect_message(
    suppressWarnings(save_fig(p, paste0(tempdir(), "/test.pdf"))),
    "Saving 7 x 7 in image"
  )
})

test_that("keyATM Heterogeneity Topic-Word", {
  RepParty <- as.vector(bills_cov[, "RepParty"]) # the length should be the same as the number of documents
  strata_tw <- by_strata_TopicWord(cov, keyATM_docs, by = RepParty)

  RepParty_chr <- ifelse(bills_cov[, "RepParty"] == 0, "Democrat", "Republican")
  strata_tw_chr <- by_strata_TopicWord(cov, keyATM_docs, RepParty_chr)
  expect_equal(
    top_words(strata_tw_chr, n = 3)$Republican[1, 3],
    "public [\U2713]"
  )
})


# Covariate settings: Standardize
bills_cov_modified <- as.data.frame(bills_cov)
bills_cov_modified$factor <- factor(rep(1:10, nrow(bills_cov_modified) / 10))
bills_cov_modified$numerical <- 1:nrow(bills_cov_modified)

cov <- suppressWarnings(keyATM(
  docs = keyATM_docs,
  no_keyword_topics = 3,
  keywords = bills_keywords,
  model = "covariates",
  model_settings = list(
    covariates_data = bills_cov,
    standardize = "none",
    covariates_formula = NULL,
    covariates_model = "PG"
  ),
  options = list(
    seed = 250,
    store_theta = TRUE,
    iterations = 5,
    store_pi = 1,
    thinning = 5,
    verbose = FALSE
  )
))

test_that("Covariates settings: Standardize - none, no formula", {
  expect_identical(cov$kept_values$model_settings$covariates_data_use[2, 1], 0L)
  expect_identical(ncol(cov$kept_values$model_settings$covariates_data_use), 1L)

  skip_on_os("linux")
  skip_on_cran()
  expect_error(predict(cov, bills_cov_modified))
  expect_equal(
    as.numeric(suppressWarnings(predict(cov, bills_cov, transform = TRUE))[
      3,
      3
    ]),
    0.1329791,
    tolerance = 0.000001
  )

  bills_cov_copy <- bills_cov
  bills_cov_copy[, 1] <- 1
  expect_equal(
    as.numeric(suppressWarnings(predict(cov, bills_cov_copy, transform = TRUE))[
      3,
      3
    ]),
    0.1379893,
    tolerance = 0.000001
  )
  expect_equal(
    as.numeric(suppressWarnings(predict(cov, bills_cov_copy))[3, 3]),
    0.1379893,
    tolerance = 0.000001
  )
})


cov <- keyATM(
  docs = keyATM_docs,
  no_keyword_topics = 3,
  keywords = bills_keywords,
  model = "covariates",
  model_settings = list(
    covariates_data = bills_cov_modified,
    standardize = "none",
    covariates_formula = ~.,
    covariates_model = "PG"
  ),
  options = list(
    seed = 250,
    store_theta = TRUE,
    iterations = 5,
    store_pi = 1,
    thinning = 5,
    verbose = FALSE
  )
)

test_that("Covariates settings: Standardize - none", {
  expect_identical(cov$kept_values$model_settings$covariates_data_use[2, 2], 0)
  expect_identical(
    ncol(cov$kept_values$model_settings$covariates_data_use),
    12L
  )

  skip_on_os("linux")
  skip_on_cran()
  expect_error(predict(cov, bills_cov_modified))
  expect_equal(
    as.numeric(suppressMessages(predict(
      cov,
      bills_cov_modified,
      transform = TRUE
    ))[3, 3]),
    0.1907234,
    tolerance = 0.000001
  )
})


cov <- keyATM(
  docs = keyATM_docs,
  no_keyword_topics = 3,
  keywords = bills_keywords,
  model = "covariates",
  model_settings = list(
    covariates_data = bills_cov_modified,
    standardize = "non-factor",
    covariates_formula = ~.,
    covariates_model = "PG"
  ),
  options = list(
    seed = 250,
    store_theta = TRUE,
    iterations = 5,
    store_pi = 1,
    thinning = 5,
    verbose = FALSE
  )
)

test_that("Covariates settings: Standardize - non-factor", {
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[2, 2]),
    -1.257464,
    tolerance = 0.00001
  )
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[5, 12]),
    -1.614947,
    tolerance = 0.00001
  )
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[8, 1]),
    1,
    tolerance = 0.00001
  )
  expect_identical(
    ncol(cov$kept_values$model_settings$covariates_data_use),
    12L
  )

  skip_on_os("linux")
  skip_on_cran()
  expect_error(predict(cov, bills_cov_modified))
  expect_equal(
    as.numeric(suppressMessages(predict(
      cov,
      bills_cov_modified,
      transform = TRUE
    ))[2, 3]),
    0.1384179,
    tolerance = 0.000001
  )
})


cov <- keyATM(
  docs = keyATM_docs,
  no_keyword_topics = 3,
  keywords = bills_keywords,
  model = "covariates",
  model_settings = list(
    covariates_data = bills_cov_modified,
    standardize = "all",
    covariates_formula = ~.,
    covariates_model = "PG"
  ),
  options = list(
    seed = 250,
    store_theta = TRUE,
    iterations = 5,
    store_pi = 1,
    thinning = 5,
    verbose = FALSE
  )
)

test_that("Covariates settings: Standardize - all", {
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[2, 2]),
    -1.257464,
    tolerance = 0.00001
  )
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[3, 3]),
    -0.3321407,
    tolerance = 0.00001
  )
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[5, 12]),
    -1.614947,
    tolerance = 0.00001
  )
  expect_equal(
    as.numeric(cov$kept_values$model_settings$covariates_data_use[8, 1]),
    1,
    tolerance = 0.00001
  )
  expect_identical(
    ncol(cov$kept_values$model_settings$covariates_data_use),
    12L
  )

  skip_on_os("linux")
  skip_on_cran()
  expect_error(predict(cov, bills_cov_modified))
  expect_equal(
    as.numeric(suppressMessages(predict(
      cov,
      bills_cov_modified,
      transform = TRUE
    ))[5, 2]),
    0.03387499,
    tolerance = 0.0001
  )
})

Try the keyATM package in your browser

Any scripts or data that you put into this service are public.

keyATM documentation built on Aug. 8, 2025, 6:14 p.m.