Nothing
#' Levene's Test of Equality of Variances
#'
#' Tests equality of the \eqn{k} population variances.
#'
#' @inherit lnested.test details
#'
#' @note
#' Instead of the ANOVA statistic suggested by Levene,
#' the Kruskal--Wallis ANOVA may also be applied using this function
#' (see the parameter \code{kruskal.test}).
#'
#' Modified from a response posted by Brian Ripley to the R-help e-mail list.
#'
#'
#' @inheritParams lnested.test
#' @param kruskal.test logical value indentifying whether to use the Kruskal--Wallis
#' statistic. The default option is \code{FALSE}, i.e., the usual ANOVA statistic is used.
#'
#'
#' @return A list of class \code{"htest"} with the following components:
#' \item{statistic}{the value of the test statistic.}
#' \item{p.value}{the \eqn{p}-value of the test.}
#' \item{method}{type of test performed.}
#' \item{data.name}{a character string giving the name of the data.}
#' \item{non.bootstrap.p.value}{the \eqn{p}-value of the test without bootstrap method;
#' i.e. the \eqn{p}-value using the approximated critical value.}
#'
#' @references
#' \insertAllCited{}
#'
#' @seealso \code{\link{neuhauser.hothorn.test}}, \code{\link{lnested.test}},
#' \code{\link{ltrend.test}}, \code{\link{mma.test}}, \code{\link{robust.mmm.test}}
#'
#' @keywords htest homogeneity robust variability
#'
#' @author Kimihiro Noguchi, W. Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth, Weiwen Miao
#'
#' @export
#' @examples
#' data(pot)
#' levene.test(pot[,"obs"], pot[,"type"],
#' location = "median", correction.method = "zero.correction")
#'
#' ## Bootstrap version of the test. The calculation may take up a few minutes
#' ## depending on the number of bootstrap sampling.
#' levene.test(pot[,"obs"], pot[,"type"],
#' location = "median", correction.method = "zero.correction",
#' bootstrap = TRUE, num.bootstrap = 500)
#'
levene.test <- function(y,
group,
location = c("median", "mean", "trim.mean"),
trim.alpha = 0.25,
bootstrap = FALSE,
num.bootstrap = 1000,
kruskal.test = FALSE,
correction.method = c("none",
"correction.factor",
"zero.removal",
"zero.correction"))
{
### stop the code if the length of y does not match the length of group ###
if (length(y) != length(group)) {
stop("the length of the data (y) does not match the length of the group.")
}
### assign location, tail, and a correction method ###
location <- match.arg(location)
correction.method <- match.arg(correction.method)
DNAME = deparse(substitute(y))
y <- y[!is.na(y)]
group <- group[!is.na(y)]
### stop the code if the location "trim.mean" is selected and trim.alpha is too large ###
if ((location == "trim.mean") & (trim.alpha > 0.5)) {
stop("trim.alpha value of 0 to 0.5 should be provided for the trim.mean location.")
}
### sort the order just in case the input is not sorted by group ###
reorder <- order(group)
group <- group[reorder]
y <- y[reorder]
gr <- group
group <- as.factor(group) # precautionary
### define the measure of central tendency (mean, median, trimmed mean) ###
if (location == "mean") {
means <- tapply(y, group, mean)
METHOD <-
"Classical Levene's test based on the absolute deviations from the mean"
} else if (location == "median") {
means <- tapply(y, group, median)
METHOD = "Modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median"
} else {
location = "trim.mean"
means <- tapply(y, group, mean, trim = trim.alpha)
METHOD <-
"Modified robust Levene-type test based on the absolute deviations from the trimmed mean"
}
### calculate the sample size of each group and absolute deviation from center ###
n <- tapply(y, group, length)
resp.mean <- abs(y - means[group])
ngroup <- n[group]
### assign no correction technique if the central tendency is median, and ###
### any technique other than "correction.factor" is chosen ###
if (location != "median" &&
correction.method != "correction.factor")
{
METHOD <- paste(
METHOD,
"(",
correction.method,
"not applied because the location is not set to median",
")"
)
correction.method <- "none"
}
### multiply the correction factor to each observation if "correction.factor" is chosen ###
if (correction.method == "correction.factor")
{
METHOD <- paste(METHOD, "with correction factor")
correction <- sqrt(ngroup / (ngroup - 1))
resp.mean <- correction * resp.mean
}
### perform correction techniques for "zero.removal" (Hines and Hines, 2000) ###
### or "zero.correction" (Noguchi and Gel, 2009). ###
if (correction.method == "zero.removal" ||
correction.method == "zero.correction")
{
if (correction.method == "zero.removal") {
METHOD <- paste(METHOD,
"with Hines-Hines structural zero removal method")
}
if (correction.method == "zero.correction") {
METHOD <- paste(METHOD,
"with modified structural zero removal method and correction factor")
}
### set up variables for calculating the deviation from center ###
resp.mean <- y - means[group]
k <- length(n)
temp <- double()
endpos <- double()
startpos <- double()
### calculate the absolute deviation from mean and remove zeros ###
for (i in 1:k) {
group.size <- n[i]
j <- i - 1
### calculate the starting and ending index of each group ###
if (i == 1)
start <- 1
else
start <- sum(n[1:j]) + 1
startpos <- c(startpos, start)
end <- sum(n[1:i])
endpos <- c(endpos, end)
### extract the deviation from center for the ith group ###
sub.resp.mean <- resp.mean[start:end]
sub.resp.mean <- sub.resp.mean[order(sub.resp.mean)]
### remove structural zero for the odd-sized group ###
if (group.size %% 2 == 1) {
mid <- (group.size + 1) / 2
temp2 <- sub.resp.mean[-mid]
### multiply the correction factor for the "zero.correction" option ###
if (correction.method == "zero.correction") {
ntemp <- length(temp2) + 1
correction <- sqrt((ntemp - 1) / ntemp)
temp2 <- correction * temp2
}
}
### remove structural zero for the even-sized group ###
if (group.size %% 2 == 0) {
mid <- group.size / 2
### set up the denominator value for the transformation ###
### set sqrt(2) for the "zero.removal" option ###
if (correction.method == "zero.removal") {
denom <- sqrt(2)
} else {
### set 1 for the "zero.correction" option ###
denom <- 1
}
### perform the orthogonal transformation ###
replace1 <-
(sub.resp.mean[mid + 1] - sub.resp.mean[mid]) / denom
temp2 <- sub.resp.mean[c(-mid, -mid - 1)]
temp2 <- c(temp2, replace1)
### multiply the correction factor for the "zero.correction" option ###
if (correction.method == "zero.correction")
{
ntemp <- length(temp2) + 1
correction <- sqrt((ntemp - 1) / ntemp)
temp2 <- correction * temp2
}
}
### collect the transformed variables into the vector ###
temp <- c(temp, temp2)
}
### calculate the absolute deviation from center with modifications ###
resp.mean <- abs(temp)
zero.removal.group <- group[-endpos]
}
### set correction.method to be "none" if specified other than those in the option ###
else
{
correction.method = "none"
}
### calculate statistic and p-value when structural zeros are removed ###
### set d depending on whether structural zero removal method is used ###
if (correction.method == "zero.removal" ||
correction.method == "zero.correction")
{
d <- zero.removal.group
} else {
d <- group
}
### if the Kruskal-Wallis test is not used ###
if (kruskal.test == FALSE) {
res <- anova(lm(resp.mean ~ d))
statistic <- res[1, 4]
p.value <- res[1, 5]
} else { ### if the Kruskal-Wallis test is used ###
METHOD <- paste("rank-based (Kruskal-Wallis)", METHOD)
ktest <- kruskal.test(resp.mean, d)
statistic <- ktest$statistic
p.value = ktest$p.value
}
### store the non-boostrap p-value ###
non.bootstrap.p.value <- p.value
### perform bootstrapping (followed Lim and Loh(1996)) ###
if (bootstrap == TRUE) {
METHOD <- paste("bootstrap", METHOD)
### step 2 of Lim and Loh (1996): initialize variables ###
R <- 0
N <- length(y)
### step 3 of Lim and Loh (1996): calculate the fractional trimmed mean ###
frac.trim.alpha <- 0.2
b.trimmed.mean <- function(y)
{
nn <- length(y)
wt <- rep(0, nn)
y2 <- y[order(y)]
lower <- ceiling(nn * frac.trim.alpha) + 1
upper <- floor(nn * (1 - frac.trim.alpha))
if (lower > upper)
stop("frac.trim.alpha value is too large")
m <- upper - lower + 1
frac <- (nn * (1 - 2 * frac.trim.alpha) - m) / 2
wt[lower - 1] <- frac
wt[upper + 1] <- frac
wt[lower:upper] <- 1
return(weighted.mean(y2, wt))
}
b.trim.means <- tapply(y, group, b.trimmed.mean)
rm <- y - b.trim.means[group]
### step 7 of Lim and Loh (1996): enter a loop ###
for (j in 1:num.bootstrap)
{
### step 4 of Lim and Loh (1996): obtain a bootstrap sample ###
sam <- sample(rm, replace = TRUE)
boot.sample <- sam
### step 5 of Lim and Loh (1996): smooth the variables if n_i < 10 for at least one sample size ###
if (min(n) < 10)
{
U <- runif(1) - 0.5
means <- tapply(y, group, mean)
v <- sqrt(sum((y - means[group]) ^ 2) / N)
boot.sample <- ((12 / 13) ^ (0.5)) * (sam + v * U)
}
### step 6 of Lim and Loh (1996): compute the bootstrap statistic, and increment R to R + 1 if necessary ###
if (location == "mean") {
boot.means <- tapply(boot.sample, group, mean)
} else if (location == "median") {
boot.means <- tapply(boot.sample, group, median)
} else {
location = "trim.mean"
boot.means <- tapply(boot.sample, group, mean, trim = trim.alpha)
}
### calculate bootstrap statistic ###
resp.boot.mean <- abs(boot.sample - boot.means[group])
### multiply the correction factor to each observation if "correction.factor" is chosen ###
if (correction.method == "correction.factor")
{
correction <- sqrt(ngroup / (ngroup - 1))
resp.mean <- correction * resp.boot.mean
}
### perform correction techniques for "zero.removal" (Hines and Hines, 2000) ###
### or "zero.correction" (Noguchi and Gel, 2009). ###
if (correction.method == "zero.removal" ||
correction.method == "zero.correction")
{
### set up variables for calculating the deviation from center ###
resp.mean <- boot.sample - boot.means[group]
k <- length(n)
temp <- double()
endpos <- double()
startpos <- double()
### calculate the absolute deviation from mean and remove zeros ###
for (i in 1:k) {
group.size <- n[i]
j <- i - 1
### calculate the starting and ending index of each group ###
if (i == 1)
start <- 1
else
start <- sum(n[1:j]) + 1
startpos <- c(startpos, start)
end <- sum(n[1:i])
endpos <- c(endpos, end)
### extract the deviation from center for the ith group ###
sub.resp.mean <- resp.mean[start:end]
sub.resp.mean <-
sub.resp.mean[order(sub.resp.mean)]
### remove structural zero for the odd-sized group ###
if (group.size %% 2 == 1)
{
mid <- (group.size + 1) / 2
temp2 <- sub.resp.mean[-mid]
### multiply the correction factor for the "zero.correction" option ###
if (correction.method == "zero.correction")
{
ntemp <- length(temp2) + 1
correction <- sqrt((ntemp - 1) / ntemp)
temp2 <- correction * temp2
}
}
### remove structural zero for the even-sized group ###
if (group.size %% 2 == 0)
{
mid <- group.size / 2
### set up the denominator value for the transformation ###
### set sqrt(2) for the "zero.removal" option ###
if (correction.method == "zero.removal") {
denom <- sqrt(2)
} else {
### set 1 for the "zero.correction" option ###
denom <- 1
}
### perform the orthogonal transformation ###
replace1 <-
(sub.resp.mean[mid + 1] - sub.resp.mean[mid]) / denom
temp2 <- sub.resp.mean[c(-mid, -mid - 1)]
temp2 <- c(temp2, replace1)
### multiply the correction factor for the "zero.correction" option ###
if (correction.method == "zero.correction")
{
ntemp <- length(temp2) + 1
correction <- sqrt((ntemp - 1) / ntemp)
temp2 <- correction * temp2
}
}
### collect the transformed variables into the vector ###
temp <- c(temp, temp2)
}
### calculate the absolute deviation from center with modifications ###
resp.boot.mean <- abs(temp)
zero.removal.group <- group[-endpos]
}
### set d depending on whether structural zero removal method is used ###
if (correction.method == "zero.removal" ||
correction.method == "zero.correction")
{
d <- zero.removal.group
} else {
d <- group
}
### if the Kruskal-Wallis test is not used ###
if (kruskal.test == FALSE)
{
statistic2 = anova(lm(resp.boot.mean ~ d))[1, 4]
}
### if the Kruskal-Wallis test is used ###
else
{
bktest <- kruskal.test(resp.boot.mean, d)
statistic2 <- bktest$statistic
}
if (statistic2 > statistic)
R <- R + 1
}
### step 8 of Lim and Loh (1996): calculate the bootstrap p-value ###
p.value <- R / num.bootstrap
}
### display output ###
STATISTIC = statistic
names(STATISTIC) = "Test Statistic"
structure(
list(
statistic = STATISTIC,
p.value = p.value,
method = METHOD,
data.name = DNAME,
non.bootstrap.p.value = non.bootstrap.p.value
),
class = "htest"
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.