R/plot_text.R

Defines functions get_color_code get_html_span plot_text_explanations

Documented in plot_text_explanations

#' Plot text explanations
#'
#' Highlight words which explains a prediction.
#'
#' @param explanations object returned by the [lime.character] function.
#' @param ... parameters passed to `htmlwidgets::sizingPolicy()`
#'
#' @importFrom assertthat assert_that is.number is.string
#' @rdname text_explanations
#' @export
#'
#' @family explanation plots
#'
#' @examples
#' # We load a precalculated explanation set based on the procedure in the ?lime
#' # examples
#' explanations <- .load_text_example()
#'
#' # We see that the explanations are in the expected format
#' print(explanations)
#'
#' # We can now get the explanations in the context of the input text
#' plot_text_explanations(explanations)
#'
plot_text_explanations <- function(explanations, ...) {
  if (!requireNamespace('htmlwidgets', quietly = TRUE)) {
    stop('htmlwidgets is required for this functionality', call. = FALSE)
  }
  assert_that(is.data.frame(explanations))
  assert_that(!is.null(explanations$data))
  original_text <- explanations$data

  text_highlighted_raw <- lapply(unique(explanations$case), function(id) {
    current_case_df <- explanations[explanations$case == id,]
    original_text <- unique(current_case_df[["data"]])
    predicted_label <- unique(current_case_df[["label"]])
    predicted_label_prob <- unique(current_case_df[["label_prob"]])
    assert_that(is.string(original_text))
    assert_that(is.string(predicted_label))
    assert_that(is.number(predicted_label_prob))
    info_prediction_text <- paste0(
      '<sub>Label predicted: ',
      predicted_label,
      ' (',
      round(predicted_label_prob * 100, 2),
      '%)<br/>Explainer fit: ',
      format(current_case_df$model_r2[1], digits = 2),
      '</sub>'
    )

    current_case_df$weight_percent <- abs(current_case_df$feature_weight) / sum(abs(current_case_df$feature_weight))

    current_case_df$sign <- ifelse(current_case_df$feature_weight > 0, 1, -1)
    current_case_df$code_level <- current_case_df$sign * (1 + current_case_df$weight_percent %/% 0.2)
    current_case_df$color <- sapply(current_case_df$code_level, get_color_code)

    paste(
      get_html_span(original_text, current_case_df),
      "</br>",
      info_prediction_text
    )
  })

  text_highlighted <- paste(
    '<div style="overflow-y:scroll;font-family:sans-serif;height:100%">',
    paste("<p>", text_highlighted_raw, "</p>", collapse = "<br/>"),
    "</div>"
  )

  htmlwidgets::createWidget(
    "plot_text_explanations",
    list(html = text_highlighted),
    sizingPolicy = htmlwidgets::sizingPolicy(
      knitr.figure = FALSE,
      defaultHeight = "auto",
      knitr.defaultWidth = "100%",
      ...
    ),
    package = "lime"
  )
}

#' @importFrom stringi stri_replace_all_regex
get_html_span <- function(text, current_case_df) {
  result <- text
  for (word in current_case_df$feature) {
    color <- as.character(current_case_df[current_case_df$feature == word, "color"])
    text_searched <- paste0("(\\b", word, "\\b)")
    replace_expression <- paste0("<span class='", color, "'>", "$1", "</span>")
    result <- stri_replace_all_regex(result, text_searched, replace_expression)
  }
  result
}

get_color_code <- function(code_level) {
  switch(as.character(code_level),
         "-6" = "negative_5", # for -100%
         "-5" = "negative_5",
         "-4" = "negative_4",
         "-3" = "negative_3",
         "-2" = "negative_2",
         "-1" = "negative_1",
         "1" = "positive_1",
         "2" = "positive_2",
         "3" = "positive_3",
         "4" = "positive_4",
         "5" = "positive_5",
         "6" = "positive_5") # for 100%
}

Try the lime package in your browser

Any scripts or data that you put into this service are public.

lime documentation built on Feb. 24, 2021, 5:08 p.m.