phregr | R Documentation |
Obtains the hazard ratio estimates from the proportional hazards regression model with right censored or counting process data.
phregr(
data,
rep = "",
stratum = "",
time = "time",
time2 = "",
event = "event",
covariates = "",
weight = "",
offset = "",
id = "",
ties = "efron",
robust = FALSE,
est_basehaz = TRUE,
est_resid = TRUE,
firth = FALSE,
plci = FALSE,
alpha = 0.05
)
data |
The input data frame that contains the following variables:
|
rep |
The name(s) of the replication variable(s) in the input data. |
stratum |
The name(s) of the stratum variable(s) in the input data. |
time |
The name of the time variable or the left end of each interval for counting process data in the input data. |
time2 |
The name of the right end of each interval for counting process data in the input data. |
event |
The name of the event variable in the input data. |
covariates |
The vector of names of baseline and time-dependent covariates in the input data. |
weight |
The name of the weight variable in the input data. |
offset |
The name of the offset variable in the input data. |
id |
The name of the id variable in the input data. |
ties |
The method for handling ties, either "breslow" or "efron" (default). |
robust |
Whether a robust sandwich variance estimate should be computed. In the presence of the id variable, the score residuals will be aggregated for each id when computing the robust sandwich variance estimate. |
est_basehaz |
Whether to estimate the baseline hazards.
Defaults to |
est_resid |
Whether to estimate the martingale residuals.
Defaults to |
firth |
Whether to use Firth’s penalized likelihood method.
Defaults to |
plci |
Whether to obtain profile likelihood confidence interval. |
alpha |
The two-sided significance level. |
A list with the following components:
sumstat
: The data frame of summary statistics of model fit
with the following variables:
n
: The number of observations.
nevents
: The number of events.
loglik0
: The (penalized) log-likelihood under null.
loglik1
: The maximum (penalized) log-likelihood.
scoretest
: The score test statistic.
niter
: The number of Newton-Raphson iterations.
ties
: The method for handling ties, either "breslow" or
"efron".
p
: The number of columns of the Cox model design matrix.
robust
: Whether to use the robust variance estimate.
firth
: Whether to use Firth's penalized likelihood method.
loglik0_unpenalized
: The unpenalized log-likelihood under null.
loglik1_unpenalized
: The maximum unpenalized log-likelihood.
rep
: The replication.
parest
: The data frame of parameter estimates with the
following variables:
param
: The name of the covariate for the parameter estimate.
beta
: The log hazard ratio estimate.
sebeta
: The standard error of log hazard ratio estimate.
z
: The Wald test statistic for log hazard ratio.
expbeta
: The hazard ratio estimate.
vbeta
: The covariance matrix for parameter estimates.
lower
: The lower limit of confidence interval.
upper
: The upper limit of confidence interval.
p
: The p-value from the chi-square test.
method
: The method to compute the confidence interval and
p-value.
sebeta_naive
: The naive standard error of log hazard ratio
estimate if robust variance is requested.
vbeta_naive
: The naive covariance matrix for parameter
estimates if robust variance is requested.
rep
: The replication.
basehaz
: The data frame of baseline hazards with the following
variables (if est_basehaz is TRUE):
time
: The observed event time.
nrisk
: The number of patients at risk at the time point.
nevent
: The number of events at the time point.
haz
: The baseline hazard at the time point.
varhaz
: The variance of the baseline hazard at the time point
assuming the parameter beta is known.
gradhaz
: The gradient of the baseline hazard with respect to
beta at the time point (in the presence of covariates).
stratum
: The stratum.
rep
: The replication.
residuals
: The martingale residuals.
p
: The number of parameters.
param
: The parameter names.
beta
: The parameter estimate.
vbeta
: The covariance matrix for parameter estimates.
vbeta_naive
: The naive covariance matrix for parameter estimates.
terms
: The terms object.
xlevels
: A record of the levels of the factors used in fitting.
data
: The input data.
rep
: The name(s) of the replication variable(s).
stratum
: The name(s) of the stratum variable(s).
time
: The name of the time varaible.
time2
: The name of the time2 variable.
event
: The name of the event variable.
covariates
: The names of baseline covariates.
weight
: The name of the weight variable.
offset
: The name of the offset variable.
id
: The name of the id variable.
ties
: The method for handling ties.
robust
: Whether a robust sandwich variance estimate should be
computed.
est_basehaz
: Whether to estimate the baseline hazards.
est_resid
: Whether to estimate the martingale residuals.
firth
: Whether to use Firth's penalized likelihood method.
plci
: Whether to obtain profile likelihood confidence interval.
alpha
: The two-sided significance level.
Kaifeng Lu, kaifenglu@gmail.com
Per K. Anderson and Richard D. Gill. Cox's regression model for counting processes, a large sample study. Annals of Statistics 1982; 10:1100-1120.
Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer-Verlag, 2000.
library(dplyr)
# Example 1 with right-censored data
(fit1 <- phregr(
data = rawdata %>% mutate(treat = 1*(treatmentGroup == 1)),
rep = "iterationNumber", stratum = "stratum",
time = "timeUnderObservation", event = "event",
covariates = "treat", est_basehaz = FALSE, est_resid = FALSE))
# Example 2 with counting process data and robust variance estimate
(fit2 <- phregr(
data = heart %>% mutate(rx = as.numeric(transplant) - 1),
time = "start", time2 = "stop", event = "event",
covariates = c("rx", "age"), id = "id",
robust = TRUE, est_basehaz = TRUE, est_resid = TRUE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.