Nothing
################
### CREATE OUTPUT OBJECTS TO TEST COUNT DATA
################
# Count data
set.seed(0602)
## general properties tested model
n_t <- 100
n <- 10
m <- 3
J <- 11
burn_in <- 5
n_dep <- 2
gamma <- matrix(c(0.8, 0.1, 0.1,
0.2, 0.7, 0.1,
0.2, 0.2, 0.6), ncol = m, byrow = TRUE)
emiss_distr <- list(matrix(c(30, 70, 170), nrow = m),
matrix(c(7, 8, 18), nrow = m))
emiss_distr_log <- lapply(emiss_distr, function(q) log(q))
emiss_V <- list(rep(16, m), rep(4, m))
emiss_V_log <- var_to_logvar(gen = list(m = m, n_dep = n_dep),
emiss_mu = emiss_distr,
var_emiss = emiss_V,
byrow = FALSE)
emiss_V_log <- lapply(emiss_V_log, function(q) matrix(q, nrow = m))
# Define list of vectors of covariate values
xx_vec <- c(list(NULL),rep(list(rnorm(n, mean = 0, sd = 0.1)),2))
# Define object beta with regression coefficients for the three dependent variables
beta <- rep(list(NULL), n_dep+1)
beta[[2]] <- matrix(c(1,-1,0), byrow = TRUE, ncol = 1)
beta[[3]] <- matrix(c(2,0,-2), byrow = TRUE, ncol = 1)
# Simulate count data:
data_count1 <- sim_mHMM(n_t = n_t,
n = n,
data_distr = "count",
gen = list(m = m, n_dep = n_dep),
gamma = gamma,
emiss_distr = emiss_distr_log,
var_gamma = 0.1,
var_emiss = emiss_V_log,
return_ind_par = TRUE,
log_scale = TRUE)
data_count2 <- sim_mHMM(n_t = n_t,
n = n,
data_distr = "count",
gen = list(m = m, n_dep = n_dep),
gamma = gamma,
xx_vec = xx_vec,
beta = beta,
emiss_distr = emiss_distr_log,
var_gamma = 0.1,
var_emiss = emiss_V_log,
return_ind_par = TRUE,
log_scale = TRUE)
# correct specification
emiss_mu0_log <- list(matrix(log(c(30, 70, 170)), ncol = m, byrow = TRUE),
matrix(log(c(7, 8, 18)), ncol = m, byrow = TRUE))
emiss_K0 <- list(rep(1, 1), rep(1, 1))
emiss_mu0_log_cov <- list(matrix(c(log(c(30, 70, 170)),
1, -1, 0), ncol = m, byrow = TRUE),
matrix(c(log(c(7, 8, 18)),
2, 0, -2), ncol = m, byrow = TRUE))
emiss_K0_cov <- list(rep(1, 2), rep(1, 2))
emiss_V <- list(rep(16, m), rep(4, m))
emiss_nu <- list(0.1, 0.1)
emiss_V_log <- var_to_logvar(gen = list(m = m, n_dep = n_dep),
emiss_mu = emiss_distr,
var_emiss = emiss_V,
byrow = FALSE)
manual_prior_emiss_log <- prior_emiss_count(
gen = list(m = m, n_dep = n_dep),
emiss_mu0 = emiss_mu0_log,
emiss_K0 = emiss_K0,
emiss_V = emiss_V_log,
emiss_nu = emiss_nu,
log_scale = TRUE)
manual_prior_emiss_log_cov <- prior_emiss_count(
gen = list(m = m, n_dep = n_dep),
emiss_mu0 = emiss_mu0_log_cov,
emiss_K0 = emiss_K0_cov,
emiss_V = emiss_V_log,
emiss_nu = emiss_nu,
n_xx_emiss = c(1,1),
log_scale = TRUE)
# Matrix with covariates
xx <- rep(list(matrix(1, ncol = 1, nrow = n)), (n_dep + 1))
for(i in 2:(n_dep + 1)){
xx[[i]] <- cbind(xx[[i]], xx_vec[[i]])
}
out_count <- mHMM(s_data = data_count2$obs,
gen = list(m = m, n_dep = n_dep),
start_val = c(list(gamma), emiss_distr),data_distr = "count",emiss_hyp_prior = manual_prior_emiss_log,
mcmc = list(J = J, burn_in = burn_in), show_progress = FALSE)
out_count_cov <- mHMM(s_data = data_count2$obs,
gen = list(m = m, n_dep = n_dep), xx = xx,
start_val = c(list(gamma), emiss_distr),data_distr = "count",emiss_hyp_prior = manual_prior_emiss_log_cov,
mcmc = list(J = J, burn_in = burn_in), show_progress = FALSE)
####################
## TESTING
###############
test_that("class inherit", {
expect_s3_class(out_count, c("mHMM","count"))
expect_s3_class(out_count_cov, c("mHMM","count"))
})
test_that("print mHMM", {
# 2 dependent var, no covariates
expect_output(print(out_count), paste("Number of subjects:", n))
expect_output(print(out_count), paste(J, "iterations"))
expect_output(print(out_count), paste("likelihood over all subjects:", -701.4061))
expect_output(print(out_count), paste("AIC over all subjects: ", 1426.812))
expect_output(print(out_count), paste("states used:", m))
expect_output(print(out_count), paste("dependent variables used:", n_dep))
# 2 dependent var, 1 covariate each
expect_output(print(out_count_cov), paste("Number of subjects:", n))
expect_output(print(out_count_cov), paste(J, "iterations"))
expect_output(print(out_count_cov), paste("likelihood over all subjects:", -680.2284))
expect_output(print(out_count_cov), paste("AIC over all subjects: ", 1384.457))
expect_output(print(out_count_cov), paste("states used:", m))
expect_output(print(out_count_cov), paste("dependent variables used:", n_dep))
})
test_that("summary mHMM", {
# 2 dependent var, no covariates
expect_output(summary(out_count), "From state 1 0.784 0.114 0.102")
expect_output(summary(out_count), "From state 3 0.200 0.215 0.586")
expect_output(summary(out_count), "`observation 1`")
expect_output(summary(out_count), "`observation 2`")
# 2 dependent var, 1 covariate each
expect_output(summary(out_count_cov), "From state 1 0.777 0.100 0.124")
expect_output(summary(out_count_cov), "From state 3 0.207 0.237 0.556")
expect_output(summary(out_count_cov), "`observation 1`")
expect_output(summary(out_count_cov), "`observation 2`")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.