Nothing
library(magi)
config <- list(
nobs = 41,
noise = 0.1,
kernel = "generalMatern",
seed = 123,
npostplot = 5,
loglikflag = "band",
bandsize = 20,
hmcSteps = 20,
n.iter = 2e2,
burninRatio = 0.1,
stepSizeFactor = 1
)
VRtrue <- read.csv(system.file("testdata/FN.csv", package="magi"))
pram.true <- list(
abc=c(0.2,0.2,3),
rphi=c(0.9486433, 3.2682434),
vphi=c(1.9840824, 1.1185157),
sigma=config$noise
)
fn.true <- VRtrue[seq(1,401,by=2),] #### reference is 201 points
fn.true$time <- seq(0,20,0.1)
fn.sim <- fn.true
set.seed(config$seed)
fn.sim[,1:2] <- fn.sim[,1:2]+rnorm(length(unlist(fn.sim[,1:2])), sd=config$noise)
tvec.full <- fn.sim$time
fn.sim.all <- fn.sim
fn.sim[-seq(1,nrow(fn.sim), length=config$nobs),] <- NaN
fn.sim.obs <- fn.sim[seq(1,nrow(fn.sim), length=config$nobs),]
tvec.nobs <- fn.sim$time[seq(1,nrow(fn.sim), length=config$nobs)]
priorFactor <- magi:::calcFrequencyBasedPrior(fn.sim.obs[,1])
priorFactor2 <- magi:::getFrequencyBasedPrior(fn.sim.obs[,1])
testthat::test_that("c++ calcFrequencyBasedPrior correct", {
testthat::expect_true(all(abs(priorFactor - priorFactor2) < 1e-3))
})
testthat::test_that("c++ gpsmooth correct", {
r.nobs <- abs(outer(tvec.nobs, t(tvec.nobs),'-')[,1,])
yobs1 <- data.matrix(fn.sim.obs[,1,drop=FALSE])
outputc <- magi:::gpsmooth(yobs1,
r.nobs,
config$kernel)
fn <- function(par) {
marlik <- magi:::phisigllikC( par, yobs1, r.nobs, config$kernel)
-marlik$value
}
gr <- function(par) {
marlik <- magi:::phisigllikC( par, yobs1, r.nobs, config$kernel)
grad <- -as.vector(marlik$grad)
grad
}
fn(outputc)
testthat::expect_true(all(abs(gr(outputc)) < 1e-3))
})
testthat::test_that("c++ gpsmooth correct dim2", {
r.nobs <- abs(outer(tvec.nobs, t(tvec.nobs),'-')[,1,])
yobs1 <- data.matrix(fn.sim.obs[,1:2,drop=FALSE])
outputc <- magi:::gpsmooth(yobs1,
r.nobs,
config$kernel)
fn <- function(par) {
marlik <- magi:::phisigllikC( par, yobs1, r.nobs, config$kernel)
-marlik$value
}
gr <- function(par) {
marlik <- magi:::phisigllikC( par, yobs1, r.nobs, config$kernel)
grad <- -as.vector(marlik$grad)
grad
}
fn(outputc)
testthat::expect_true(all(abs(gr(outputc)) < 1e-1))
})
testthat::test_that("c++ gpsmooth correct with fft prior", {
r.nobs <- abs(outer(tvec.nobs, t(tvec.nobs),'-')[,1,])
yobs1 <- data.matrix(fn.sim.obs[,1,drop=FALSE])
outputc <- magi:::gpsmooth(yobs1,
r.nobs,
config$kernel,
-1,
TRUE)
xsim.obs <- fn.sim.obs[,c("time", "Vtrue", "Rtrue")]
j=1
fn <- function(par) {
marlik <- magi:::phisigllikC( par, data.matrix(xsim.obs[,1+j]), r.nobs, config$kernel)
penalty <- dnorm(par[2], max(xsim.obs$time)*priorFactor[1],
max(xsim.obs$time)*priorFactor[2], log=TRUE)
# penalty <- dgamma(par[2], alphaRate, betaRate/max(xsim.obs$time), log=TRUE)
# penalty <- 0
-(marlik$value + penalty)
}
gr <- function(par) {
marlik <- magi:::phisigllikC( par, data.matrix(xsim.obs[,1+j]), r.nobs, config$kernel)
grad <- -as.vector(marlik$grad)
penalty <- (par[2] - max(xsim.obs$time)*priorFactor[1]) / (max(xsim.obs$time)*priorFactor[2])^2
# penalty <- ((alphaRate-1)/par[2] - betaRate/max(xsim.obs$time))
# penalty <- 0
grad[2] <- grad[2] + penalty
grad
}
fn(outputc)
testthat::expect_true(all(abs(gr(outputc)) < 1e-3))
})
testthat::test_that("c++ gpsmooth correct with fixed sigma fft prior", {
r.nobs <- abs(outer(tvec.nobs, t(tvec.nobs),'-')[,1,])
yobs1 <- data.matrix(fn.sim.obs[,1,drop=FALSE])
outputc <- magi:::gpsmooth(yobs1,
r.nobs,
config$kernel,
0.1,
FALSE)
testthat::expect_equal(length(outputc), 2)
outputc <- magi:::gpsmooth(yobs1,
r.nobs,
config$kernel,
0.1,
TRUE)
testthat::expect_equal(length(outputc), 2)
})
foo <- outer(tvec.full, t(tvec.full),'-')[,1,]
r <- abs(foo)
r2 <- r^2
signr <- -sign(foo)
marlikmap <- list(par=c(2.314334, 1.346233, 0.622316, 2.451729, 0.084745))
cursigma <- marlikmap$par[5]
curCovV <- calCov(marlikmap$par[1:2], r, signr, bandsize=config$bandsize,
kerneltype=config$kernel)
curCovR <- calCov(marlikmap$par[3:4], r, signr, bandsize=config$bandsize,
kerneltype=config$kernel)
cursigma <- marlikmap$par[5]
curCovV$mu <- as.vector(fn.true[,1]) # pretend these are the means
curCovR$mu <- as.vector(fn.true[,2])
curCovV$tvecCovInput <- tvec.full
curCovR$tvecCovInput <- tvec.full
dotmu <- fnmodelODE(pram.true$abc, fn.true[,1:2]) # pretend these are the means for derivatives
curCovV$dotmu <- as.vector(dotmu[,1])
curCovR$dotmu <- as.vector(dotmu[,2])
nall <- nrow(fn.sim)
burnin <- as.integer(config$n.iter*config$burninRatio)
xInit <- c(fn.true$Vtrue, fn.true$Rtrue, pram.true$abc)
stepLowInit <- rep(0.00035, 2*nall+3)*config$stepSizeFactor
singleSampler <- function(xthetaValues, stepSize)
magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma,
xthetaValues, stepSize, config$hmcSteps, F, loglikflag = config$loglikflag)
testthat::test_that("chainSampler can run without error",{
chainSamplesOut <- magi:::chainSampler(config, xInit, singleSampler, stepLowInit, verbose=FALSE)
testthat::expect_equal(length(chainSamplesOut$lliklist), config$n.iter)
})
fnmodel <- list(
fOde=magi:::fnmodelODE,
fOdeDx=magi:::fnmodelDx,
fOdeDtheta=magi:::fnmodelDtheta,
thetaLowerBound=c(0,0,0),
thetaUpperBound=c(Inf,Inf,Inf)
)
testthat::test_that("chainSamplerRcpp can run without error",{
xthetasigmaInit <- c(fn.true$Vtrue, fn.true$Rtrue, pram.true$abc, c(cursigma, cursigma))
stepLowXthetasigmaInit <- c(rep(0.00035, 2*nall+3)*config$stepSizeFactor, 0, 0)
out <- magi:::chainSamplerRcpp(
yobs = data.matrix(fn.sim[,1:2]),
covAllDimInput = list(curCovV, curCovR),
nstepsInput = config$hmcSteps,
loglikflagInput = config$loglikflag,
priorTemperatureInput = c(1, 1),
sigmaSizeInput = 2,
modelInput = fnmodel,
niterInput = config$n.iter,
burninRatioInput = config$burninRatio,
xthetasigmaInit = xthetasigmaInit,
stepLowInit = stepLowXthetasigmaInit,
positiveSystem = FALSE,
verbose = TRUE
)
testthat::expect_equal(length(out$lliklist), config$n.iter)
xthetasigmaInit <- c(fn.true$Vtrue, fn.true$Rtrue, pram.true$abc, c(cursigma))
stepLowXthetasigmaInit <- c(rep(0.00035, 2*nall+3)*config$stepSizeFactor, 0)
out <- magi:::chainSamplerRcpp(
yobs = data.matrix(fn.sim[,1:2]),
covAllDimInput = list(curCovV, curCovR),
nstepsInput = config$hmcSteps,
loglikflagInput = config$loglikflag,
priorTemperatureInput = c(1, 1),
sigmaSizeInput = 1,
modelInput = fnmodel,
niterInput = config$n.iter,
burninRatioInput = config$burninRatio,
xthetasigmaInit = xthetasigmaInit,
stepLowInit = stepLowXthetasigmaInit,
positiveSystem = FALSE,
verbose = TRUE
)
testthat::expect_equal(length(out$lliklist), config$n.iter)
})
testthat::test_that("optimizeThetaInit can run without error",{
out <- magi:::optimizeThetaInitRcpp(
yobs = data.matrix(fn.sim[,1:2]),
odeModel = fnmodel,
covAllDimInput = list(curCovV, curCovR),
sigmaAllDimensionsInput = c(cursigma, cursigma),
priorTemperatureInput = c(1,1),
xInitInput = cbind(fn.true$Vtrue, fn.true$Rtrue),
useBandInput = TRUE
)
testthat::expect_equal(length(out), 3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.