sim | R Documentation |
Simulate data from parameterized MVN mixture models.
sim(modelName, parameters, n, seed = NULL, ...)
modelName |
A character string indicating the model. The help file for
|
parameters |
A list with the following components:
|
n |
An integer specifying the number of data points to be simulated. |
seed |
An optional integer argument to |
... |
Catches unused arguments in indirect or list calls via |
This function can be used with an indirect or list call using
do.call
, allowing the output of e.g. mstep
, em
,
me
, Mclust
to be passed directly without the need to
specify individual parameters as arguments.
A matrix in which first column is the classification and the remaining
columns are the n
observations simulated from the specified MVN
mixture model.
Attributes: |
|
simE
, ...,
simVVV
,
Mclust
,
mstep
,
do.call
irisBIC <- mclustBIC(iris[,-5])
irisModel <- mclustModel(iris[,-5], irisBIC)
names(irisModel)
irisSim <- sim(modelName = irisModel$modelName,
parameters = irisModel$parameters,
n = nrow(iris))
do.call("sim", irisModel) # alternative call
par(pty = "s", mfrow = c(1,2))
dimnames(irisSim) <- list(NULL, c("dummy", (dimnames(iris)[[2]])[-5]))
dimens <- c(1,2)
lim1 <- apply(iris[,dimens],2,range)
lim2 <- apply(irisSim[,dimens+1],2,range)
lims <- apply(rbind(lim1,lim2),2,range)
xlim <- lims[,1]
ylim <- lims[,2]
coordProj(iris[,-5], parameters=irisModel$parameters,
classification=map(irisModel$z),
dimens=dimens, xlim=xlim, ylim=ylim)
coordProj(iris[,-5], parameters=irisModel$parameters,
classification=map(irisModel$z), truth = irisSim[,-1],
dimens=dimens, xlim=xlim, ylim=ylim)
irisModel3 <- mclustModel(iris[,-5], irisBIC, G=3)
irisSim3 <- sim(modelName = irisModel3$modelName,
parameters = irisModel3$parameters, n = 500, seed = 1)
irisModel3$n <- NULL
irisSim3 <- do.call("sim",c(list(n=500,seed=1),irisModel3)) # alternative call
clPairs(irisSim3[,-1], cl = irisSim3[,1])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.