Nothing
#' An all-in-one missingness report
#' @inheritParams percent_missing
#' @inheritParams sort_by_missingness
#' @param round_to Number of places to round 2. Defaults to user digits option.
#' @param pattern_type A regular expression type. One of "starts_with",
#' "contains", or "regex". Defaults to NULL. Only use for selective inclusion.
#' @param regex_kind One of inclusion or exclusion. Defaults to exclusion to exclude
#' columns using regular expressions.
#' @param pattern Pattern to use for exclusion or inclusion.
#' column inclusion criteria.
#' @param reset_rownames Should the rownames be reset in the output? defaults to FALSE
#' @importFrom stats "aggregate" "as.formula" "na.pass"
#' @examples
#' na_summary(airquality)
#' # grouping
#' test2 <- data.frame(ID= c("A","A","B","A","B"),Vals = c(rep(NA,4),"No"),
#' ID2 = c("E","E","D","E","D"))
#' df <- data.frame(A=1:5,B=c(NA,NA,25,24,53), C=c(NA,1,2,3,4))
#'
#' na_summary(test2,grouping_cols = c("ID","ID2"))
#' # sort summary
#' na_summary(airquality,sort_by = "percent_missing",descending = TRUE)
#' na_summary(airquality,sort_by = "percent_complete")
#' # Include only via a regular expression
#' na_summary(mtcars, pattern_type = "contains",
#' pattern = "mpg|disp|wt", regex_kind = "inclusion")
#' na_summary(airquality, pattern_type = "starts_with",
#' pattern = "ozone", regex_kind = "inclusion")
#' # exclusion via a regex
#' na_summary(airquality, pattern_type = "starts_with",
#' pattern = "oz|Sol", regex_kind = "exclusion")
#' # reset rownames when sorting by variable
#' na_summary(df,sort_by="variable",descending=TRUE, reset_rownames = TRUE)
#' @export
na_summary <- function(df,grouping_cols=NULL,
sort_by=NULL,
descending=FALSE,
exclude_cols = NULL,
pattern = NULL,
pattern_type = NULL,
regex_kind = "exclusion",
round_to = NULL,
reset_rownames = FALSE){
UseMethod("na_summary")
}
#' @export
na_summary.data.frame <- function(df,grouping_cols=NULL,
sort_by=NULL,
descending=FALSE,
exclude_cols = NULL,
pattern = NULL,
pattern_type = NULL,
regex_kind = "exclusion",
round_to = NULL,
reset_rownames = FALSE){
# Round percents to chosen round
round_to = ifelse(is.null(round_to),
options("digits")[[1]], round_to)
if(all(!is.null(exclude_cols), !is.null(pattern_type))){
stop("Use either exclude_cols or pattern_type, not both.")
}
if(!is.null(pattern_type)){
if(is.null(pattern)) stop("Please provide a pattern to use.")
if(!regex_kind %in% c("inclusion", "exclusion")) stop(paste0("Use either inclusion or exclusion not ", regex_kind))
df<-switch(regex_kind,
inclusion =df[recode_selectors(df,
pattern_type = pattern_type,
pattern = pattern)],
exclusion = df[-recode_selectors(df,
pattern_type =pattern_type,
pattern = pattern)]
)
}
if(!is.null(exclude_cols)){
exclude_cols_indices <- which(names(df) %in% exclude_cols)
df <- df[-exclude_cols_indices]
}
if(is.null(grouping_cols)){
# stick to(with?) base as much as possible
# get total NAs columnwise
all_counts <-stack(get_na_counts(df))
all_percents <- stack(percent_missing(df))
all_percents$values <- round(all_percents$values, digits=round_to)
names(all_counts) <- c("missing","variable")
names(all_percents) <- c("percent_missing","variable")
if(nrow(all_counts) != nrow(all_percents)){
stop("Binding of datasets failed. Please check using percent_missing and get_na_counts first")
}
all_counts$complete <- ifelse(all_counts$missing==0,nrow(df),nrow(df) - all_counts$missing)
all_counts$percent_complete <- ifelse(all_percents$percent_missing==0,100,100 - all_percents$percent_missing)
res <- merge(all_counts,all_percents,by="variable")
}
else{
non_grouping = setdiff(names(df), grouping_cols)
#matched_groups = which(names(df) %in% grouping_cols)
if(length(non_grouping) > 1) warning("All non grouping values used. Using select non groups is currently not supported")
check_column_existence(df,grouping_cols, "to group by")
grouping_cols_formula = paste0(grouping_cols,collapse="+")
agg_formula <- as.formula(paste0(".~",
grouping_cols_formula))
res<-do.call(data.frame,aggregate(agg_formula,data=df,
function(x) c(missing = sum(is.na(x)),
complete = length(x) - sum(is.na(x)),
percent_complete = mean(!is.na(x)) * 100,
percent_missing = mean(is.na(x)) * 100
) , na.action = na.pass)) %>%
tidyr::pivot_longer(cols = -all_of(grouping_cols)) %>%
tidyr::separate(name,c("variable","metric"),
sep="\\.(?=percent|miss|complete)") %>%
tidyr::pivot_wider(names_from=metric,values_from=value)
res$percent_complete=round(res$percent_complete, digits = round_to)
res$percent_missing=round(res$percent_missing, digits = round_to)
}
if(!is.null(sort_by)){
stopifnot("sort_by should be a valid name in the output of na_summary" =
sort_by %in% names(res))
# Get the value to sort by
target_column <- res[[sort_by]]
# Check class of this value and use appropriate sorting
if (is.factor(target_column)) target_column <- as.character(target_column)
res <- res[sort(target_column,decreasing=descending,index.return=TRUE)[[2]],]
}
if(reset_rownames) rownames(res) <- NULL
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.