dat.michael2013 | R Documentation |
Results from studies exploring how a superfluous fMRI brain image influences the persuasiveness of a scientific claim.
dat.michael2013
The data frame contains the following columns:
Study | character | name of the study: Citation - Experiment - Subgroup |
No_brain_n | numeric | sample size for no-brain-image condition |
No_brain_m | numeric | mean agreement rating for no-brain-image condition |
No_brain_s | numeric | standard deviation for no-brain-image condition |
Brain_n | numeric | sample size for brain-image condition |
Brain_m | numeric | mean agreement rating for brain-image condition |
Brain_s | numeric | standard deviation for brain-image condition |
Included_Critique | character | ‘Critique’ if article included critical commentary on conclusions, otherwise ‘No_critique’ |
Medium | character | ‘Paper’ if conducted in person; ‘Online’ if conducted online |
Compensation | character | notes on compensation provided to participants |
Participant_Pool | character | notes on where participants were recruited |
yi | numeric | raw mean difference, calculated as Brain_m - No_brain_m |
vi | numeric | corresponding sampling variance |
The dataset contains the data from the meta-analysis by Michael et al. (2013) of experiments on the persuasive power of a brain image. The meta-analysis analyzed an original study by McCabe and Castel (2008) as well as 10 replication attempts conducted by the authors of the meta-analysis.
In each study, participants read an article about using brain imaging as a lie detector. The article either included a superfluous fMRI image of a brain (brain) or not (no_brain). After reading the article, all participants responded to the statement “Do you agree or disagree with the conclusion that brain imaging can be used as a lie detector?” on a scale from 1 (strongly disagree) to 4 (strongly agree).
The original study by McCabe and Castel (2008) reported a relatively large increase in agreement due to the presence of brain images. Meta-analysis of the original study with the 10 replications suggests, however, a small, possibly null effect: an estimated average raw mean difference of 0.07 points, 95% CI [-0.00, 0.14], under a random-effects model.
In some studies, the article included a passage critiquing the primary claims made in the article; this is coded in the Included_Critique
column for analysis as a possible moderator. Note that Experiment 3 by McCabe and Castel (2008) was a 2x2 between subjects design: brain image presence was manipulated as well as the inclusion of a critique. The two different critique conditions are recorded as separate rows in this dataset. Analysis of this dataset with metafor yields the same results (given rounding) reported in the manuscript.
psychology, persuasion, raw mean differences
Robert Calin-Jageman, rcalinjageman@dom.edu, https://calin-jageman.net
Michael, R. B., Newman, E. J., Vuorre, M., Cumming, G., & Garry, M. (2013). On the (non)persuasive power of a brain image. Psychonomic Bulletin & Review, 20(4), 720–-725. https://doi.org/10.3758/s13423-013-0391-6
McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition, 107(1), 343–352. https://doi.org/10.1016/j.cognition.2007.07.017
### copy data into 'dat' and examine data dat <- dat.michael2013 dat ## Not run: ### load metafor package library(metafor) ### Data prep # yi and vi are already provided, but here's how you would use escalc() to obtain # a raw-mean difference and its variance. # Note the measure parameter is "MD" for 'raw mean difference' dat <- metafor::escalc( measure = "MD", m1i = Brain_m, m2i = No_brain_m, sd1i = Brain_s, sd2i = No_brain_s, n1i = Brain_n, n2i = No_brain_n, data = dat ) ### meta-analysis using a random-effects model of the raw mean differences res <- rma(yi, vi, data=dat) print(res, digits=2) ### examine if Included_Critique is a potential moderator res <- rma(yi, vi, mods = ~ Included_Critique, data=dat) print(res, digits=2) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.