dat.moura2021 | R Documentation |
Results from 457 studies on assortative mating in various species.
dat.moura2021
The object is a list containing a data frame called dat
that contains the following columns and a phylogenetic tree called tree
:
study.id | character | study id |
effect.size.id | numeric | effect size id |
species | character | species |
species.id | character | species id (as in the Open Tree of Life reference taxonomy) |
subphylum | character | the subphyla of the species |
phylum | character | the phyla of the species |
assortment.trait | character | the measure of body size |
trait.dimensions | character | dimensionality of the measure |
field.collection | character | whether data were collected in the field |
publication.year | numeric | publication year of the study |
pooled.data | character | whether data were pooled either spatially and/or temporally |
spatially.pooled | character | whether data were pooled spatially |
temporally.pooled | character | whether data were pooled temporally |
ri | numeric | correlation coefficient |
ni | numeric | sample size |
The 457 studies included in this dataset provide 1828 correlation coefficients describing the similarity in some measure of body size in mating couples in 341 different species.
ecology, evolution, correlation coefficients, multivariate models, phylogeny, meta-regression
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Rios Moura, R., Oliveira Gonzaga, M., Silva Pinto, N., Vasconcellos-Neto, J., & Requena, G. S. (2021). Assortative mating in space and time: Patterns and biases. Ecology Letters, 24(5), 1089–1102. https://doi.org/10.1111/ele.13690
Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13760
Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494–508. https://doi.org/10.1111/j.1420-9101.2009.01915.x
Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. Evolutionary Ecology, 26(5), 1253–1274. https://doi.org/10.1007/s10682-012-9555-5
### copy data into 'dat' and examine data dat <- dat.moura2021$dat head(dat) ## Not run: ### load metafor package library(metafor) ### load ape package library(ape, warn.conflicts=FALSE) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### copy tree to 'tree' tree <- dat.moura2021$tree ### turn tree into an ultrametric one tree <- compute.brlen(tree) ### compute phylogenetic correlation matrix A <- vcv(tree, corr=TRUE) ### make copy of the species.id variable dat$species.id.phy <- dat$species.id ### fit multilevel phylogenetic meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### examine if spatial and/or temporal pooling of data tends to yield larger correlations res <- rma.mv(yi, vi, mods = ~ spatially.pooled * temporally.pooled, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### estimated average correlation without pooling, when pooling spatially, ### when pooling temporally, and when pooling spatially and temporally predict(res, newmods = rbind(c(0,0,0),c(1,0,0),c(0,1,0),c(1,1,1)), transf=transf.ztor, digits=2) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.