dat.moura2021: Studies on Assortative Mating

dat.moura2021R Documentation

Studies on Assortative Mating

Description

Results from 457 studies on assortative mating in various species.

Usage

dat.moura2021

Format

The object is a list containing a data frame called dat that contains the following columns and a phylogenetic tree called tree:

study.id character study id
effect.size.id numeric effect size id
species character species
species.id character species id (as in the Open Tree of Life reference taxonomy)
subphylum character the subphyla of the species
phylum character the phyla of the species
assortment.trait character the measure of body size
trait.dimensions character dimensionality of the measure
field.collection character whether data were collected in the field
publication.year numeric publication year of the study
pooled.data character whether data were pooled either spatially and/or temporally
spatially.pooled character whether data were pooled spatially
temporally.pooled character whether data were pooled temporally
ri numeric correlation coefficient
ni numeric sample size

Details

The 457 studies included in this dataset provide 1828 correlation coefficients describing the similarity in some measure of body size in mating couples in 341 different species.

Concepts

ecology, evolution, correlation coefficients, multivariate models, phylogeny, meta-regression

Author(s)

Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org

Source

Rios Moura, R., Oliveira Gonzaga, M., Silva Pinto, N., Vasconcellos-Neto, J., & Requena, G. S. (2021). Assortative mating in space and time: Patterns and biases. Ecology Letters, 24(5), 1089–1102. https://doi.org/10.1111/ele.13690

References

Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13760

Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494–508. https://doi.org/10.1111/j.1420-9101.2009.01915.x

Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. Evolutionary Ecology, 26(5), 1253–1274. https://doi.org/10.1007/s10682-012-9555-5

Examples

### copy data into 'dat' and examine data
dat <- dat.moura2021$dat
head(dat)

## Not run: 

### load metafor package
library(metafor)

### load ape package
library(ape, warn.conflicts=FALSE)

### calculate r-to-z transformed correlations and corresponding sampling variances
dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat)

### copy tree to 'tree'
tree <- dat.moura2021$tree

### turn tree into an ultrametric one
tree <- compute.brlen(tree)

### compute phylogenetic correlation matrix
A <- vcv(tree, corr=TRUE)

### make copy of the species.id variable
dat$species.id.phy <- dat$species.id

### fit multilevel phylogenetic meta-analytic model
res <- rma.mv(yi, vi,
   random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy),
   R=list(species.id.phy=A), data=dat)
res

### examine if spatial and/or temporal pooling of data tends to yield larger correlations
res <- rma.mv(yi, vi,
   mods = ~ spatially.pooled * temporally.pooled,
   random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy),
   R=list(species.id.phy=A), data=dat)
res

### estimated average correlation without pooling, when pooling spatially,
### when pooling temporally, and when pooling spatially and temporally
predict(res, newmods = rbind(c(0,0,0),c(1,0,0),c(0,1,0),c(1,1,1)), transf=transf.ztor, digits=2)


## End(Not run)

metadat documentation built on April 6, 2022, 5:08 p.m.