dat.pagliaro1992 | R Documentation |
Results from 26 trials examining the effectiveness of beta-blockers and sclerotherapy for the prevention of first bleeding in patients with cirrhosis
dat.pagliaro1992
The data frame contains the following columns:
study | numeric | study id |
trt | character | either beta-blockers, sclerotherapy, or control |
xi | numeric | number of patients with first bleeding |
ni | numeric | number of patients treated |
The dataset includes the results from 26 randomized controlled trials examining the effectiveness of nonsurgical treatments for the prevention of first bleeding in patients with cirrhosis. Patients were either treated with beta-blockers, endoscopic sclerotherapy, or with a nonactive treatment (control). Two trials included all three treatment conditions, 7 trials compared beta-blockers against control, and 17 trials compared sclerotherapy against control. The dataset has been used in various papers to illustrate methods for conducting a network meta-analysis / mixed treatment comparison.
medicine, odds ratios, Mantel-Haenszel method, network meta-analysis
Wolfgang Viechtbauer, wvb@metafor-project.org, https://www.metafor-project.org
Pagliaro, L., D'Amico, G., Sörensen, T. I. A., Lebrec, D., Burroughs, A. K., Morabito, A., Tiné, F., Politi, F., & Traina, M. (1992). Prevention of first bleeding in cirrhosis: A meta-analysis of randomized trials of nonsurgical treatment. Annals of Internal Medicine, 117(1), 59–70. https://doi.org/10.7326/0003-4819-117-1-59
### copy data into 'dat' and examine data dat <- dat.pagliaro1992 dat ## Not run: ### load metafor package library(metafor) ### restructure dataset to a contrast-based format dat.c <- to.wide(dat, study="study", grp="trt", grpvars=3:4) dat.c ### Mantel-Haenszel results for beta-blockers and sclerotherapy versus control, respectively rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="beta-blockers"), digits=2) rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="sclerotherapy"), digits=2) ### calculate log odds for each study arm dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat) dat ### turn treatment variable into factor and set reference level dat$trt <- relevel(factor(dat$trt), ref="control") ### add a space before each level (this makes the output a bit more legible) levels(dat$trt) <- paste0(" ", levels(dat$trt)) ### network meta-analysis using an arm-based random-effects model with fixed study effects ### (by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons) res <- rma.mv(yi, vi, mods = ~ factor(study) + trt - 1, random = ~ trt | study, rho=1/2, data=dat) res ### average odds ratio comparing beta-blockers and sclerotherapy versus control, respectively predict(res, newmods=c(rep(0,26), 1, 0), transf=exp, digits=2) predict(res, newmods=c(rep(0,26), 0, 1), transf=exp, digits=2) ### average odds ratio comparing beta-blockers versus sclerotherapy predict(res, newmods=c(rep(0,26), 1, -1), transf=exp, digits=2) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.